Microwave Sintering of ZrO2 Fiber-Reinforced Hydroxyapatite Matrix Composites

Article Preview

Abstract:

PSZ (ZrO2 Fiber)-reinforced HAp was sintered using conventional and microwave hybrid heating. Microwave heating cycles were ~50 times faster than conventional sintering cycles and enabled the use of reduced densification temperatures and soak times by as much as ~100°C and 55 min, respectively. However, although there was a significant improvement in densification levels attainable before decomposition, the improvements were insufficient to produce near-fully or fully dense samples. However, the promising gains made suggest that microwave hot pressing would be a suitable area for future work. Keywords: Hydroxyapatite, microwave sintering, fibre-reinforced ceramics, bioceramics, zirconia fibre

You might also be interested in these eBooks

Info:

Pages:

93-106

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Monmaturapoj, C. Yatongchai, Effect of Sintering on Microstructure and Properties of Hydroxyapatite Produced by Different Synthesizing Methods, J. Metals, Mater. Minerals (2010), 20, (2), 53-61.

Google Scholar

[2] G. Goller, F. N Oktar, S. Agathopoulos, D. U Tulyaganov, J.M. F Ferreira, E. S Kayati, I. Peker, Effect of sintering temperature on mechanical and microstructural properties of bovine hydroxyapatite (BHA), Journal of Sol-Gel Science and Technology (2006).

DOI: 10.1007/s10971-006-6428-9

Google Scholar

[3] S. Li, H. Izui, M. Okano, W. Zhang, T. Watanabe, Fabrication of Hydroxyapatite-Incorporated ZrO2-20 wt. % Al2O3 by Spark Plasma Sintering and Characterization, J. Composite Materials (2009), 43 (14) 1503-17.

DOI: 10.1177/0021998308337631

Google Scholar

[4] S. L Shi, W. Pan, Machinable Ti 3 SiC 2 /Hydroxyapatite Bioceramic Composites by Spark Plasma Sintering, J. Amer. Ceramic Society, (2007), 90 (10), 3331-3.

DOI: 10.1111/j.1551-2916.2007.01882.x

Google Scholar

[5] R. Ramachandra Rao, T. S Kannan, Synthesis and sintering of hydroxyapatite-zirconia composites, Materials Science and Engineering C (2002), 20 (1-2), 187-193.

DOI: 10.1016/s0928-4931(02)00031-0

Google Scholar

[6] O. Gunduz, E. M Erkan, S. Daglilar, S. Salman, S. Agathopoulos, F. N Oktar, Composites of bovine hydroxyapatite (BHA) and ZnO, J. Material Science, (2008), 43 (8), 2536-40.

DOI: 10.1007/s10853-008-2497-1

Google Scholar

[7] S. Hesaraki, T. Ebadzadeh, S. Ahmadzadeh-Asl, Nanosilicon carbide/hydroxyapatite nanocomposites: structural, mechanical and in vitro cellular properties, J. Material Science: Materials in Medicine, (2010), 21 (7), 2141-49.

DOI: 10.1007/s10856-010-4068-7

Google Scholar

[8] D. J Curran, T. J Fleming, G. Kawachi, M.R. Towler, Characterisation and mechanical testing of hydrothermally treated HA/ZrO2 composites, J. Mater Sci: Mater in Med (2009), 20 (11), 2235-41.

DOI: 10.1007/s10856-009-3801-6

Google Scholar

[9] Y. Nayak, R. P Rana, S. K Pratihar, S. Bhattacharyya, Pressureless sintering of dense hydroxyapatite-zirconia composites, J. Mater Sci: Mater in Med, (2008), 19 (6), 2437-44.

DOI: 10.1007/s10856-008-3371-z

Google Scholar

[10] F. N Oktar, S. Agathopoulos, L. S Ozyegin, O. Gunduz, N. Demikol, Y. Bozkurt, S. Salman, Mechanical properties of bovine hydroxyapatite (BHA) composites doped with SiO2, MgO, Al2O3, and ZrO2, J. Mater Sci: Mater in Med, (2007), 18 (11), 2137-43.

DOI: 10.1007/s10856-007-3200-9

Google Scholar

[11] A. A White, I. A Kinloch, A. H Windle, S. M Best, Optimization of the sintering atmosphere for high-density hydroxyapatite-carbon nanotube composites, J. Royal Soc Interface (2010), 7 (Supp 5), S529-S539.

DOI: 10.1098/rsif.2010.0117.focus

Google Scholar

[12] M. Knepper, B. K Milhtorpe, S. Morica, Interdiffusion in short-fibre reinforced hydroxyapatite ceramics, J. Mater Sci: Mater in Med (1998), 9 (10), 589-596.

Google Scholar

[13] J. A Delgado, L. Morejón, S. Martínez, M. P Ginebra, N. Carlsson, E. Fernández, J. A Planell, M. T Clavaguera-Mora, J. Rodríguez-Viejo, Zirconia-toughened hydroxyapatite ceramic obtained by wet sintering, J. Mater Sci: Mater in Med (1999).

DOI: 10.4028/www.scientific.net/kem.192-195.151

Google Scholar

[14] K.A. Khalil, S. W Kim, High-Frequency Induction Heating Sintering of Hydroxyapatite-(ZrO2+3%Mol Y2O3) Bioceramics, Materials Science Forum (2007), 534-536, 1033-36.

DOI: 10.4028/www.scientific.net/msf.534-536.1033

Google Scholar

[15] A. Szewczyk-Nykiel, M. Nykiel, Study of hydroxyapatite behaviour during sintering of 316L steel, Archives of Foundry Eng. (2010), 10, Special Issue 3/2010, 235-240.

Google Scholar

[16] H. Kim, Y. Kong, Y. Koh, H. Kim, Pressureless Sintering and Mechanical and Biological Properties of Fluor-hydroxyapatite Composites with Zirconia, J. Am. Ceram. Soc. (2003), 86 (12), 2019-26.

DOI: 10.1111/j.1151-2916.2003.tb03602.x

Google Scholar

[17] W. R Weinand, F.F. R Goncalves, W. M Lima, Effect of Sintering Temperature in Physical-Mechanical Behaviour and in Titanium-Hydroxyapatite Composite Sinterability, Mater Sci Forum (2006), 530-531, 249-54.

DOI: 10.4028/www.scientific.net/msf.530-531.249

Google Scholar

[18] A. J Ruys, K. A Zeigler, O. C Standard, A. Brandwood, B. K Milthorpe, C. C Sorrell, Hydroxyapatite Sintering Phenomena: Densification and Dehydration Behaviour, pp.605-10 in Ceramics: Adding the Value, Volume 2. Edited by M.J. Bannister. CSIRO Publications, Melbourne, (1992).

Google Scholar

[19] S. Nath, B. Basu, A. Sinha, A Comparative Study of Conventional Sintering with Microwave Sintering of Hydroxyapatite Synthesized by Chemical Route, Trends in Biomater and Artif Organs (2006), 19 (2), 93-98.

Google Scholar

[20] H. Abdelhamid, B. Djamel, K. Noureddine, M. Fatima-Zohra, Sintering of bioceramics using a modified domestic microwave oven: Natural hydroxyapatite sintering, J. Thermal Analysis and Calorimetry, (2011), 104, (1), 383-8.

DOI: 10.1007/s10973-010-1115-z

Google Scholar

[21] D. J Currab, T. J Fleming, M. R Towler, S. Hampshire, Mechanical properties of hydroxyapatite-zirconia compacts sintered by two different sintering methods, J. Mater Sci: Mater in Med, (2009), 21 (4), 1109-1120.

DOI: 10.1007/s10856-009-3974-z

Google Scholar

[22] I. Teoreanu, M. Preda, A. Melinescu, Synthesis and characterization of hydroxyapatite by microwave heating using CaSO4·2H2O and Ca(OH)2 as calcium source, J. Mater Sci: Mater in Med, (2007), 19 (2), 517-523.

DOI: 10.1007/s10856-006-0038-5

Google Scholar

[23] W. H Sutton, Microwave Processing of Ceramic Materials, Am. Ceram. Soc. Bull., (1989), 68 (2), 376-86.

Google Scholar

[24] W. H Sutton, Key Issues in Microwave Process Technology, pp.3-18 in Ceramic Transactions, Volume 36 (Microwaves: Theory and Applications in Materials Processing II). Edited by D. E Clark, W. R Tinga, J. R Laia, Jr. American Ceramic Society, Westerville, OH, (1993).

DOI: 10.1080/10426919808935244

Google Scholar

[25] G. Xu, I. Lloyd, Y. Carmel, T. Olorunyolemi, O. Wilson, Jr, Microwave sintering of ZnO at ultra-high heating rates, J. Mater. Res. (2001), 16 (10), 2850-58.

DOI: 10.1557/jmr.2001.0393

Google Scholar

[26] Y. Fang, D. K Agrawal, D. M Roy, R. Roy, Microwave Sintering of Calcium Strontium Zirconium Phosphate Ceramics, pp.109-14 in Ceramic Transactions, Vol. 36 (Microwaves: Theory and Applications in Materials Processing II). Edited by D. E Clark, W. R Tinga, J. R Laia, Jr. American Ceramic Society, Westerville, OH, (1993).

DOI: 10.1080/10426919808935244

Google Scholar

[27] Y. Fang, D. M Roy, J. Cheng, R. Roy, D. K Agrawal, Microwave Sintering of Hydroxyapatite-Based Composites, pp.397-406 in Ceramic Transactions, Vol. 36 (Microwaves: Theory and Applications in Materials Processing II). Edited by D.E. Clark, W. R Tinga, J. R Laia, Jr. American Ceramic Society, Westerville, OH, (1993).

DOI: 10.1080/10426919808935244

Google Scholar

[28] N. Ehsani, A. J Ruys, C. C Sorrell, Thixotropic Casting of Fecralloy®-Fibre-Reinforced Hydroxyapatite, Key Eng. Mater. (1995), 104-107, 373-80.

DOI: 10.4028/www.scientific.net/kem.104-107.373

Google Scholar

[29] A. J Ruys, K. A Zeigler, B. K Milthorpe, C. C Sorrell, Hydroxylapatite-Ceramic/Metal Composites: Quantification of Additive-Induced Dehydration, pp.591-97 in Ceramics: Adding the Value, Volume 1. Edited by M. J Bannister. CSIRO Publications, Melbourne, (1992).

Google Scholar

[30] S. Das, A. K Mukhopadhyay, S. Datta, D. Basu, Prospects of microwave processing: An overview, Bull. Mater. Sci. (2009), 32 (1), 1-13.

DOI: 10.1007/s12034-009-0001-4

Google Scholar

[31] M. A Janney, H. D Kimrey, Microwave Sintering of Alumina at 28 GHz, pp.919-24 in Ceramic Transactions, Volume I (Ceramic Powder Science II). Edited by G. L Messing, E. R Fuller, H. Hausner. American Ceramic Society, Westerville, OH, (1988).

Google Scholar

[32] Y. Fang, D.K. Agrawal, D.M. Roy, and R. Roy, Microwave Sintering of Hydroxyapatite Ceramics, J. Mater. Res., (1994), 9 (1), 180-87.

DOI: 10.1557/jmr.1994.0180

Google Scholar

[33] Y. Fang, D. K Agrawal, D. M Roy, R. Roy, Fabrication of Porous Hydroxyapatite Ceramics by Microwave Processing, J. Mater. Res., (1992), 7.

DOI: 10.1557/jmr.1992.0490

Google Scholar

[2] 490-94.

Google Scholar

[34] Y. Fang, D. K Agrawal, D. M Roy, R. Roy, Rapid Sintering of Hydroxyapatite Ceramics by Microwave Processing, pp.349-56 in Ceramic Transactions, Vol. 21 (Microwaves: Theory and Applications in Materials Processing I). Edited by D. E Clark, F. D Gac and W. H Sutton. American Ceramic Society, Westerville, OH, (1991).

Google Scholar

[35] Y. Fang, D. M Roy, J. Cheng, R. Roy, D. K Agrawal, Microwave Sintering of Hydroxyapatite-Based Composites, pp.397-406 in Ceramic Transactions, Vol. 36 (Microwaves: Theory and Applications in Materials Processing II). Edited by D. E Clark, W. R Tinga, J. R Laia, Jr. American Ceramic Society, Westerville, OH, (1993).

DOI: 10.1080/10426919808935244

Google Scholar

[36] M. A Janney, H. D Kimrey, Microstructure Evolution in Microwave Sintered Alumina, in Advances in Sintering. Edited by J. Bleninger and C. Handwerker. American Ceramic Society, Westerville, OH, (1990).

Google Scholar

[37] G. E Fanslow, Microwave Enhancement of Chemical and Physical Reactions, pp.43-48 in Microwave Processing of Materials II (Mater. Res. Soc. Proc, Vol. 189). Edited by W. B Synder, Jr., W. H Sutton, M. F Iskander, D. L Johnson. Materials Research Society, Pittsburgh, PA, (1991).

Google Scholar

[38] A. De', I. Ahmad, E. D Whitney, D. E Clark, Effect of Green Microstructure on Microwave Processing of Alumina: Effect of Particle Size, Ceram. Eng. Sci. Proc., (1990), 11 (9-10), 1743-53.

Google Scholar

[39] M. A Janney, M. L Jackson, H. D Kimrey, Microwave Sintering of ZrO2-12 mol% CeO2, pp.101-108 in Ceramic Transactions, Vol. 36 (Microwaves: Theory and Applications in Materials Processing II). Edited by D. E Clark, W. R Tinga, J. R Laia, Jr. American Ceramic Society, Westerville, OH, (1993).

DOI: 10.1080/10426919808935244

Google Scholar

[40] J. Zhang, Y. Yang, L. Cao, S. Chen, X. Shong, F. Xia, Microwave Sintering of Nanocrystalline ZrO2 Powders, pp.591-597 in Microwave Processing of Materials IV (Mater. Res. Soc. Proc. 347). Edited by M. F Iskandar, R. J Lauf, W. H Sutton. Materials Research Society, Pittsburgh, PA, (1994).

Google Scholar

[41] S. A Nightingale, R.H. J Hannink, S. Street, Fabrication and Characterization of Microwave Sintered Zirconia Ceramics, pp.299-309 in Science and Technology of Zirconia V. Edited by S.P. S Badwal, M. S Bannister, and R.H. J Hannink. Technomic Publishing Co. Inc, Lancaster, PA, (1993).

Google Scholar

[42] C. E Holcombe, N. L Dykes, Microwave Sintering of Titanium Diboride, J. Mater. Sci. (1991), 26 (14), 3730-38.

DOI: 10.1007/bf01184963

Google Scholar

[43] M. A Janney, H. D Kimrey, Diffusion-Controlled Processes in Microwave-Fired Oxide Ceramics, pp.215-28 in Microwave Processing of Materials II (Mater. Res. Soc. Proc, Vol. 189). Edited by W. B Synder, Jr., W. H Sutton, M. F Iskander, D. L Johnson. Materials Research Society, Pittsburgh, PA, (1991).

DOI: 10.1557/proc-189-215

Google Scholar

[44] O. Gunduz, E. M Erkan, S. Daglilar, S. Salman, S. Agathopoulos, F. N Oktar, Composites of bovine hydroxyapatite (BHA) and ZnO, Journal of Material Science, (2008), 43 (8), 2536-40.

DOI: 10.1007/s10853-008-2497-1

Google Scholar

[45] D. Demirskyi, D. Agrawal, A. Ragulya, Neck growth kinetics during microwave sintering of nickel powder, J. Alloys and Compounds (2011), 509 (5), 1790-95.

DOI: 10.1016/j.jallcom.2010.10.042

Google Scholar

[46] Z. Fathi, I. Ahmad, J. H Simmons, D. E Clark, A. R Lodding, Surface Modification of Sodium Aluminosilicate Glasses Using Microwave Energy, pp.623-30 in Ceramic Transactions, Vol. 21 (Microwaves: Theory and Applications in Materials Processing I). Edited by D. E Clark, F. D Gac, W.H. Sutton. American Ceramic Society, Westerville, OH, (1991).

Google Scholar

[47] Z. Fathi, D. E Clark, R. Hutcheon, Surface Modification of Ceramics Using Microwave Energy, pp.347-52 in Microwave Processing of Materials III (Mater. Res. Soc. Proc, Vol. 269). Edited by R. L Beatty, W. H Sutton, M. F Iskandar. Materials Research Society, Pittsburgh, PA, (1992).

DOI: 10.1557/proc-269-347

Google Scholar

[48] J. Cheng, J. Qiu, J. Zhou, and N. Ye, Densification Kinetics of Alumina During Microwave Sintering, pp.323-28 in Microwave Processing of Materials III (Mater. Res. Soc. Proc, Vol. 269). Edited by R. L Beatty, W.H. Sutton, M.F. Iskandar. Materials Research Society, Pittsburgh, PA, (1992).

DOI: 10.1557/proc-269-323

Google Scholar

[49] I. Ahmad, D. E Clark, Effect of Microwave Heating on the Mass Transport in Ceramics, pp.287-96 in Ceramic Transactions, Vol. 36 (Microwaves: Theory and Applications in Materials Processing II). Edited by D. E Clark, W. R Tinga, J. R Laia, Jr. American Ceramic Society, Westerville, OH, (1993).

DOI: 10.1080/10426919808935244

Google Scholar

[50] Z. Fathi, D. C Folz, D. E Clark, R. Hutcheon, Surface Modification of Sodium Aluminosilicate Glasses Using Microwave Energy II, pp.333-40 in Ceramic Transactions, Vol. 36 (Microwaves: Theory and Applications in Materials Processing II). Edited by D. E Clark, W. R Tinga, J.R. Laia, Jr. American Ceramic Society, Westerville, OH, (1993).

DOI: 10.1080/10426919808935244

Google Scholar

[51] Y. L Tian, D. L Johnson, M. E Brodwin, Ultrafine Microstructure of Al2O3 Produced by Microwave Sintering, 925-32 in Ceramic Transactions, Vol. I (Ceramic Powder Science II). Edited by G. L Messing, E. R Fuller, H. Hausner. American Ceramic Society, Westerville, OH, (1988).

Google Scholar

[52] J. H Booske, R. F Cooper, I. Dobson, Mechanisms for Nonthermal Effects on Ionic Mobility During Microwave Processing of Crystalline Solids, J. Mater. Res. (1992), 7 (2), 495-501.

DOI: 10.1557/jmr.1992.0495

Google Scholar

[53] T. T Meek, Proposed Model for the Sintering of a Dielectric in a Microwave Field, J. Mater. Sci. Lett. (1987), 6 (6), 638-40.

Google Scholar

[54] A. C Metaxas, and R. J Meredith, Industrial Microwave Heating, Peter Peregrinus Ltd., London. (1983).

Google Scholar

[55] B. Rilley, Microwave Treatment of Ceramic Materials, pp.1233-61 in Ceramics Today - Tomorrow's Ceramics. Edited by P. Vincenzini. Elsevier, B.V. (1991).

Google Scholar

[56] I. Zhang, L. Cao, F. Xia, Microwave Sintering of Si3N4 Ceramics, pp.329-34 in Microwave Processing of Materials III (Mater. Res. Soc. Proc, Vol. 269). Edited by R. L Beatty, W. H Sutton, M. F Iskandar. Materials Research Society, Pittsburgh, PA, (1992).

Google Scholar

[57] K.A. Zeigler, A.J. Ruys, C.C. Sorrell, B.K. Milthorpe, and A. Brandwood, Interfacial Analysis of Hydroxyapatite-Particulate Addition Composites, pp.623-28 in Ceramics: Adding the Value, Vol. 2 (proceedings of the International Ceramic Conference, Austceram 92). Edited by M.J. Bannister. CSIRO Publications, Melbourne, (1992).

Google Scholar

[58] K. A Zeigler, A. J Ruys, C. C Sorrell, Interdiffusion in Hydroxyapatite Composites, pp.175-84 in Proceedings of the 3rd Australian Forum on Metal Matrix Composites. Edited by S. Bandyopadhyay, A. G Crosky. IMMA, Sydney, (1992).

Google Scholar

[59] F. F Lange, Constrained Network Model for Predicting Densification Behaviour of Composite Powders, J. Mater. Res. (1987), 2, 59-65.

DOI: 10.1557/jmr.1987.0059

Google Scholar

[60] A. J Ruys, M. Wei, C. C Sorrell, M. R Dickson, A. Brandwood, B. K Milthorpe, Sintering Effects on the Strength of Hydroxyapatite, Biomater. (1995), 16 (5), 409-15.

DOI: 10.1016/0142-9612(95)98859-c

Google Scholar

[61] A. J Ruys, M. Wei, A. Brandwood, B. K Milthorpe, C. C Sorrell, The Effects of Excessive Sintering on the Properties of Hydroxyapatite, pp.586-90 in Ceramics: Adding the Value, Vol. 1. Edited by M. J Bannister. CSIRO Publications, Melbourne, (1992).

Google Scholar

[62] N. Ehsani, A.J. Ruys, C.C. Sorrell; Microwave Sintering of Al2O3 Fiber-Reinforced Hydroxyapatite Matrix Composites, J. Biomim. Biomat. Tiss. Eng., (2012), 13, 91-104.

DOI: 10.4028/www.scientific.net/jbbte.13.91

Google Scholar