Self-Healing Materials as New Biologically Inspired Materials

Article Preview

Abstract:

Lightweight, high strength fibre-reinforced polymeric composites are leading materials in many advanced applications including biomedical components. These materials offer the feasibility to incorporate multi functionalities due to their internal architecture, heterogeneity of materials and the flexibility of combining them using currently available fabrication methods. In spite of the excellent properties of these materials, their failure is still a questionable and not well predicted event. Delamination, debonding and micro-cracks are only some of the failure mechanisms that affect the matrices of polymer based composites. More complex cases exist with the combination of multiple failure mechanisms. In such cases a self-repairing mechanism that can be auto-triggered in the matrix material once the crack has been formed, would be very beneficial for all the applications of these materials, reducing maintenance costs and increasing their safety and reliability. Self-healing materials have been studied for more than a decade by now, with the specific objective of reducing the risks and costs of cracking and damage in a wide range of materials. Different approaches have been taken to create such materials, depending on the kind of material that needs to be repaired. The most popular methods developed for polymers and polymer reinforced composites are considered in this review. These methods include materials with micro-capsules containing a healing agent, and composites with matrices that can self-heal the cracks by repairing the broken molecular links upon external heating. While the first approach to healing has been widely used and studied in the past decade, in this review we focus on the second approach since less is reported in the literature and more difficult is the development of the materials based on such a method.

You might also be interested in these eBooks

Info:

Pages:

11-25

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Boncheva, G. Whitesides. Dekker Encyclopedia of Nanoscience and nanotechnology, CRC Press, (2004).

Google Scholar

[2] X. Li, Z-H Xu, R. Wang. In Situ Observation of Nanograin Rotation and Deformation in Nacre. Nano Letters, 6 (10), (2006), 2301-2304.

DOI: 10.1021/nl061775u

Google Scholar

[3] C. Ortiz, M. Boyce. Bioinspired Structural Materials. Science, 319 (5866), (2008), 1053-4.

Google Scholar

[4] F. Barthelat. Nacre from mollusk shells: a model for high-performance structural materials. Bioinspir. Biomim, 5 (3), (2010), 035001.

DOI: 10.1088/1748-3182/5/3/035001

Google Scholar

[5] J. Rossiter, B. Yap, A. Conn. Biomimetic chromatophores for camouflage and soft active surfaces. Bioinspir. Biomim, 7 (3), (2012), 036009.

DOI: 10.1088/1748-3182/7/3/036009

Google Scholar

[6] M. Shahinpooor. Biomimetic Robotic Venus flytrap (Dionaea Muscipula Ellis) Made with Ionic Polymer Metal Composites (IPMCs). Bioinspir. Biomim, 6 (4), (2011), 1-11, 046004.

DOI: 10.1088/1748-3182/6/4/046004

Google Scholar

[7] R. Vaia, J. Baur. Adaptive Composites. Science, 319 (5862), (2008), 420-1.

Google Scholar

[8] S. R White, N. R Sottos, P. H Guebelle, J. S Moore, M. R Kessler, S. R Sriram, E. N Brown, S. Viswanathan. Autonomic healing of polymer composites. Nature, 409, (2001), 794-7.

DOI: 10.1038/35057232

Google Scholar

[9] J. D Rule, N. Sottos, S. R White. Effect of microcapsule size on the performance of self-healing polymers. Polymer, 48 (2007), 3520-3529.

DOI: 10.1016/j.polymer.2007.04.008

Google Scholar

[10] M. R Kessler, N. R Sottos, S. R White. Self-healing structural composite materials. Compos. Part A: Appl. S., 34 (8), (2003), 743-753.

DOI: 10.1016/s1359-835x(03)00138-6

Google Scholar

[11] A. S Jones, J. D Rule, J. S Moore, N. R Sottos, S. R White. Life extension of self-healing polymers with rapidly growing fatigue cracks. J. R Soc. Interface, 4 (13), (2007), 395-403.

DOI: 10.1098/rsif.2006.0199

Google Scholar

[12] B. J Blaiszik, M. M Caruso, D. A McIlroy, J. S Moore, S. R White, N. R Sottos. Microcapsules filled with reactive solutions for self-healing materials. Polymer, 50 (4), (2009), 990-997.

DOI: 10.1016/j.polymer.2008.12.040

Google Scholar

[13] S. A Hayes, W. Zhang, M. Branthwaite, F. R Jones. Self-healing of damage in fibre-reinforced polymer-matrix composites. J. R. Soc. Interface, 4 (13), (2007), 381-387.

DOI: 10.1098/rsif.2006.0209

Google Scholar

[14] S. A Hayes, F. R Jones, K. Marshiya, W. Zhang. A self-healing thermosetting composite material. Compos. Part A-Appl. S., 38 (4), (2007), 1116-1120.

DOI: 10.1016/j.compositesa.2006.06.008

Google Scholar

[15] E. N Brown, N. R Sottos, S. R White. Fracture Testing of a Self-Healing Polymer Composite. Exp. Mech., 42 (4), (2002), 372-379.

DOI: 10.1007/bf02412141

Google Scholar

[16] R. S Trask, H. R Williams, I. Bond. Self-healing polymer composites: mimicking nature to enhance performance. Bioinspir. Biomim, 2 (1), (2007), 1-9.

DOI: 10.1088/1748-3182/2/1/p01

Google Scholar

[17] K. S Toohey, N. R Sottos, J. A Lewis, J. S Moore, S. R White. Self-healing materials with microvascular networks. Nature Mater., 6 (8), (2007), 581-585.

DOI: 10.1038/nmat1934

Google Scholar

[18] Y. Imai, H. Itoh, K. Naka, Y. Chujo. Thermally reversible IPN Organic-Inorganic polymer hybrids utilizing the Diels-Alder reaction. Macromolecules, 33 (12), (2000), 4343-4346.

DOI: 10.1021/ma991899b

Google Scholar

[19] X. Chen, M. A Dam, K. Ono, A. Mal, H. Shen, S. R Nutt, K. Sheran, F. Wudl. A Thermally re-mendable cross-linked polymeric material. Science, 295 (5560), (2002), 1698-1702.

DOI: 10.1126/science.1065879

Google Scholar

[20] X. Chen, F. Wudl, A. K Mal, H. Shen, S. N Nutt. New thermally remendable highly cross-linked polymeric materials. Macromolecules, 36 (6), (2003), 1802-1807.

DOI: 10.1021/ma0210675

Google Scholar

[21] S. Y Zhang, Q. Xue, D. Wang. Creep effect on dynamic visco-elastic properties of polymer matrix composite. Appl. Compos. Mater., 1 (2), (1994), 125-133.

DOI: 10.1007/bf00567574

Google Scholar

[22] H. H Kausch, M. Tirrell. Polymer Interdiffusion. Annu. Rev. Mater. Sci., 19, (1989), 341-377.

DOI: 10.1146/annurev.ms.19.080189.002013

Google Scholar

[23] R. P Wool in: Polymer interfaces: Structure and strength, New York, Hanser Gardner Press, (1995).

Google Scholar

[24] R. P Wool, K. M O'Connor. Time dependence of crack healing. Polymer Letters, 20 (1), (1982), 7-16.

Google Scholar

[25] M. Ribeiro, J.P. E Grolier. Temperature modulated DSC for the investigation of polymer materials: a brief account of recent studies. J. Therm. Anal. Calorim., 57 (1), (1999), 253-263.

Google Scholar

[26] M. Song. Modulated differential scanning calorimetry observation of physical ageing in polymers. J. Therm. Anal. Calorim., 63 (3), (2000), 699-707.

Google Scholar

[27] B. Wunderlinch in: Thermal analysis, Boston, Academic Press, (1990).

Google Scholar

[28] T. A Plaisted, S. Nemat-Nasser. Quantitative evaluation of fracture, healing and re-healing of a reversible cross-linked polymer. Acta Mater., 55 (17), (2007), 5684-5696.

DOI: 10.1016/j.actamat.2007.06.019

Google Scholar

[29] T. A Plaisted, A. V Amirkhizi, S. Nemat-Nasser. Compression-induced axial crack propagation in DCDC polymer samples: experiments and modelling. Int. J. Fracture, 141 (3-4), (2006), 447-457.

DOI: 10.1007/s10704-006-9006-9

Google Scholar

[30] F. Ghezzo, R. D Smith, N. T Starr, T. Perram, A. F Starr, K. T Darlington, R. K Baldwin, S. J Oldenburg. Development and characterization of healable carbon fiber composites with a reversibly cross linked polymer. J. Comp. Mater., 44 (13), (2010).

DOI: 10.1177/0021998310363165

Google Scholar

[31] J. S Park, T. Darlington, A. F Starr, K. Takahashi, J. Riendeau, H. T Hahn. Multiple healing effect of thermally activated self-healing composites based on Diels-Alder reaction. Compos. Sci. Technol., 70 (15), (2010), 2154-2159.

DOI: 10.1016/j.compscitech.2010.08.017

Google Scholar

[32] S. K Mazumdar in: Composite manufacturing, CRC Press, Boca Raton, Florida, (2002).

Google Scholar

[33] F. Ghezzo, T. Starr, T. Perram, T. K Darlington, A. F Starr, D. R Smith: 17th International Conference on Composite Materials, ICCM-17, Edinburgh, (2009).

Google Scholar

[34] A. V Bronnikov. Theory of quantitative phase-contrast computed tomography. J. Optical Soc. America, 19 (3), (2002), 472-480.

DOI: 10.1364/josaa.19.000472

Google Scholar

[35] M. A Anastasio, D. Shi, F. De Carlo, X. Pan. Analytic image reconstruction in local phase-contast tomography. Phys. Med. Biol., 49 (1), (2004), 121-144.

DOI: 10.1088/0031-9155/49/1/009

Google Scholar

[36] P. Cloetens, W. Ludwig, E. Boller, L. Helfen, L. Salvo, R. Mache, M. Schlenker. Quantitative phase contrast tomography using coherent synchrotron radiation. Proceedings of SPIE, Vol. 4503, (2002), 82-91.

DOI: 10.1117/12.452867

Google Scholar

[37] J. S Park, K. Takahashi, Z. Guo, Y. Wang, E. Bolanos, C. Hamann-Schaffner, E. Murphy, F. Wudl, T. Hahn. Towards development of a self-healing composite using a mendable polymer and resistive heating J. Comp. Mater., 42 (26), (2008), 2869-2881.

DOI: 10.1177/0021998308097280

Google Scholar

[38] J. S Park, H. S Kim, H. T Hahn. Healing behaviour of a matrix crack on a carbon fiber/mendomer composite. Compos. Sci. Technol., 69 (7-8), (2009), 1082-1087.

DOI: 10.1016/j.compscitech.2009.01.031

Google Scholar

[39] T. Yin, M. Z Rong, M. Q Zhang, J. Q Zhao. Durability of self-healing woven glass fibre epoxy composites, International Conference on Multifunctional Materials and Structures (MFMS 08), 28-31 July, Hong Kong, (2008).

Google Scholar

[40] E. B Murphy, E. Bolanos, C. Schaffner-Hamann, F. Wudl, S. R Nutt, M. L Auad. Synthesis and Characterisation of a single-component thermally remendable polymer network: Staudinger and Stille revisited. Macromolecules, 41 (14), (2008), 5203-5209.

DOI: 10.1021/ma800432g

Google Scholar