[1]
M. Boncheva, G. Whitesides. Dekker Encyclopedia of Nanoscience and nanotechnology, CRC Press, (2004).
Google Scholar
[2]
X. Li, Z-H Xu, R. Wang. In Situ Observation of Nanograin Rotation and Deformation in Nacre. Nano Letters, 6 (10), (2006), 2301-2304.
DOI: 10.1021/nl061775u
Google Scholar
[3]
C. Ortiz, M. Boyce. Bioinspired Structural Materials. Science, 319 (5866), (2008), 1053-4.
Google Scholar
[4]
F. Barthelat. Nacre from mollusk shells: a model for high-performance structural materials. Bioinspir. Biomim, 5 (3), (2010), 035001.
DOI: 10.1088/1748-3182/5/3/035001
Google Scholar
[5]
J. Rossiter, B. Yap, A. Conn. Biomimetic chromatophores for camouflage and soft active surfaces. Bioinspir. Biomim, 7 (3), (2012), 036009.
DOI: 10.1088/1748-3182/7/3/036009
Google Scholar
[6]
M. Shahinpooor. Biomimetic Robotic Venus flytrap (Dionaea Muscipula Ellis) Made with Ionic Polymer Metal Composites (IPMCs). Bioinspir. Biomim, 6 (4), (2011), 1-11, 046004.
DOI: 10.1088/1748-3182/6/4/046004
Google Scholar
[7]
R. Vaia, J. Baur. Adaptive Composites. Science, 319 (5862), (2008), 420-1.
Google Scholar
[8]
S. R White, N. R Sottos, P. H Guebelle, J. S Moore, M. R Kessler, S. R Sriram, E. N Brown, S. Viswanathan. Autonomic healing of polymer composites. Nature, 409, (2001), 794-7.
DOI: 10.1038/35057232
Google Scholar
[9]
J. D Rule, N. Sottos, S. R White. Effect of microcapsule size on the performance of self-healing polymers. Polymer, 48 (2007), 3520-3529.
DOI: 10.1016/j.polymer.2007.04.008
Google Scholar
[10]
M. R Kessler, N. R Sottos, S. R White. Self-healing structural composite materials. Compos. Part A: Appl. S., 34 (8), (2003), 743-753.
DOI: 10.1016/s1359-835x(03)00138-6
Google Scholar
[11]
A. S Jones, J. D Rule, J. S Moore, N. R Sottos, S. R White. Life extension of self-healing polymers with rapidly growing fatigue cracks. J. R Soc. Interface, 4 (13), (2007), 395-403.
DOI: 10.1098/rsif.2006.0199
Google Scholar
[12]
B. J Blaiszik, M. M Caruso, D. A McIlroy, J. S Moore, S. R White, N. R Sottos. Microcapsules filled with reactive solutions for self-healing materials. Polymer, 50 (4), (2009), 990-997.
DOI: 10.1016/j.polymer.2008.12.040
Google Scholar
[13]
S. A Hayes, W. Zhang, M. Branthwaite, F. R Jones. Self-healing of damage in fibre-reinforced polymer-matrix composites. J. R. Soc. Interface, 4 (13), (2007), 381-387.
DOI: 10.1098/rsif.2006.0209
Google Scholar
[14]
S. A Hayes, F. R Jones, K. Marshiya, W. Zhang. A self-healing thermosetting composite material. Compos. Part A-Appl. S., 38 (4), (2007), 1116-1120.
DOI: 10.1016/j.compositesa.2006.06.008
Google Scholar
[15]
E. N Brown, N. R Sottos, S. R White. Fracture Testing of a Self-Healing Polymer Composite. Exp. Mech., 42 (4), (2002), 372-379.
DOI: 10.1007/bf02412141
Google Scholar
[16]
R. S Trask, H. R Williams, I. Bond. Self-healing polymer composites: mimicking nature to enhance performance. Bioinspir. Biomim, 2 (1), (2007), 1-9.
DOI: 10.1088/1748-3182/2/1/p01
Google Scholar
[17]
K. S Toohey, N. R Sottos, J. A Lewis, J. S Moore, S. R White. Self-healing materials with microvascular networks. Nature Mater., 6 (8), (2007), 581-585.
DOI: 10.1038/nmat1934
Google Scholar
[18]
Y. Imai, H. Itoh, K. Naka, Y. Chujo. Thermally reversible IPN Organic-Inorganic polymer hybrids utilizing the Diels-Alder reaction. Macromolecules, 33 (12), (2000), 4343-4346.
DOI: 10.1021/ma991899b
Google Scholar
[19]
X. Chen, M. A Dam, K. Ono, A. Mal, H. Shen, S. R Nutt, K. Sheran, F. Wudl. A Thermally re-mendable cross-linked polymeric material. Science, 295 (5560), (2002), 1698-1702.
DOI: 10.1126/science.1065879
Google Scholar
[20]
X. Chen, F. Wudl, A. K Mal, H. Shen, S. N Nutt. New thermally remendable highly cross-linked polymeric materials. Macromolecules, 36 (6), (2003), 1802-1807.
DOI: 10.1021/ma0210675
Google Scholar
[21]
S. Y Zhang, Q. Xue, D. Wang. Creep effect on dynamic visco-elastic properties of polymer matrix composite. Appl. Compos. Mater., 1 (2), (1994), 125-133.
DOI: 10.1007/bf00567574
Google Scholar
[22]
H. H Kausch, M. Tirrell. Polymer Interdiffusion. Annu. Rev. Mater. Sci., 19, (1989), 341-377.
DOI: 10.1146/annurev.ms.19.080189.002013
Google Scholar
[23]
R. P Wool in: Polymer interfaces: Structure and strength, New York, Hanser Gardner Press, (1995).
Google Scholar
[24]
R. P Wool, K. M O'Connor. Time dependence of crack healing. Polymer Letters, 20 (1), (1982), 7-16.
Google Scholar
[25]
M. Ribeiro, J.P. E Grolier. Temperature modulated DSC for the investigation of polymer materials: a brief account of recent studies. J. Therm. Anal. Calorim., 57 (1), (1999), 253-263.
Google Scholar
[26]
M. Song. Modulated differential scanning calorimetry observation of physical ageing in polymers. J. Therm. Anal. Calorim., 63 (3), (2000), 699-707.
Google Scholar
[27]
B. Wunderlinch in: Thermal analysis, Boston, Academic Press, (1990).
Google Scholar
[28]
T. A Plaisted, S. Nemat-Nasser. Quantitative evaluation of fracture, healing and re-healing of a reversible cross-linked polymer. Acta Mater., 55 (17), (2007), 5684-5696.
DOI: 10.1016/j.actamat.2007.06.019
Google Scholar
[29]
T. A Plaisted, A. V Amirkhizi, S. Nemat-Nasser. Compression-induced axial crack propagation in DCDC polymer samples: experiments and modelling. Int. J. Fracture, 141 (3-4), (2006), 447-457.
DOI: 10.1007/s10704-006-9006-9
Google Scholar
[30]
F. Ghezzo, R. D Smith, N. T Starr, T. Perram, A. F Starr, K. T Darlington, R. K Baldwin, S. J Oldenburg. Development and characterization of healable carbon fiber composites with a reversibly cross linked polymer. J. Comp. Mater., 44 (13), (2010).
DOI: 10.1177/0021998310363165
Google Scholar
[31]
J. S Park, T. Darlington, A. F Starr, K. Takahashi, J. Riendeau, H. T Hahn. Multiple healing effect of thermally activated self-healing composites based on Diels-Alder reaction. Compos. Sci. Technol., 70 (15), (2010), 2154-2159.
DOI: 10.1016/j.compscitech.2010.08.017
Google Scholar
[32]
S. K Mazumdar in: Composite manufacturing, CRC Press, Boca Raton, Florida, (2002).
Google Scholar
[33]
F. Ghezzo, T. Starr, T. Perram, T. K Darlington, A. F Starr, D. R Smith: 17th International Conference on Composite Materials, ICCM-17, Edinburgh, (2009).
Google Scholar
[34]
A. V Bronnikov. Theory of quantitative phase-contrast computed tomography. J. Optical Soc. America, 19 (3), (2002), 472-480.
DOI: 10.1364/josaa.19.000472
Google Scholar
[35]
M. A Anastasio, D. Shi, F. De Carlo, X. Pan. Analytic image reconstruction in local phase-contast tomography. Phys. Med. Biol., 49 (1), (2004), 121-144.
DOI: 10.1088/0031-9155/49/1/009
Google Scholar
[36]
P. Cloetens, W. Ludwig, E. Boller, L. Helfen, L. Salvo, R. Mache, M. Schlenker. Quantitative phase contrast tomography using coherent synchrotron radiation. Proceedings of SPIE, Vol. 4503, (2002), 82-91.
DOI: 10.1117/12.452867
Google Scholar
[37]
J. S Park, K. Takahashi, Z. Guo, Y. Wang, E. Bolanos, C. Hamann-Schaffner, E. Murphy, F. Wudl, T. Hahn. Towards development of a self-healing composite using a mendable polymer and resistive heating J. Comp. Mater., 42 (26), (2008), 2869-2881.
DOI: 10.1177/0021998308097280
Google Scholar
[38]
J. S Park, H. S Kim, H. T Hahn. Healing behaviour of a matrix crack on a carbon fiber/mendomer composite. Compos. Sci. Technol., 69 (7-8), (2009), 1082-1087.
DOI: 10.1016/j.compscitech.2009.01.031
Google Scholar
[39]
T. Yin, M. Z Rong, M. Q Zhang, J. Q Zhao. Durability of self-healing woven glass fibre epoxy composites, International Conference on Multifunctional Materials and Structures (MFMS 08), 28-31 July, Hong Kong, (2008).
Google Scholar
[40]
E. B Murphy, E. Bolanos, C. Schaffner-Hamann, F. Wudl, S. R Nutt, M. L Auad. Synthesis and Characterisation of a single-component thermally remendable polymer network: Staudinger and Stille revisited. Macromolecules, 41 (14), (2008), 5203-5209.
DOI: 10.1021/ma800432g
Google Scholar