[1]
F.R. Noyes, S.D. Barber-Westin, Repair of complex and avascular meniscal tears and meniscal transplantation. Journal of Bone and Joint Surgery - Series A, (2010). 92 (4): 1012-1029.
Google Scholar
[2]
K. A Athanasiou, J. Sanchez-Adams, Engineering the Knee Meniscus, ed. (2009): Morgan & Claypool.
Google Scholar
[3]
R. Verdonk, P. Verdonk, W. Huysse, R. Forsyth, E. L Heinrichs, Tissue ingrowth after implantation of a novel, biodegradable polyurethane scaffold for treatment of partial meniscal lesions. American Journal of Sports Medicine, (2011).
DOI: 10.1177/0363546511398040
Google Scholar
[4]
S. A Maher, S. A Rodeo, S. B Doty, R. Brophy, H. Potter, L. F Foo, L. Rosenblatt, X. H Deng, A. S Turner, T. M Wright, R. F Warren, Evaluation of a porous polyurethane scaffold in a partial meniscal defect ovine model. Arthroscopy, (2010).
DOI: 10.1016/j.arthro.2010.02.033
Google Scholar
[5]
R. H Brophy, J. Cottrell, S. A Rodeo, T. M Wright, R. F Warren, S. A Maher, Implantation of a synthetic meniscal scaffold improves joint contact mechanics in a partial meniscectomy cadaver model. Journal of Biomedical Materials Research - Part A, (2010).
DOI: 10.1002/jbm.a.32384
Google Scholar
[6]
S. A Maher, S. A Rodeo, H. G Potter, L. J Bonassar, T. M Wright, R. F Warren, A Pre-Clinical Test Platform for the Functional Evaluation of Scaffolds for Musculoskeletal Defects: The Meniscus. HSS Journal, (2011). 7 (2): 157-63.
DOI: 10.1007/s11420-010-9188-6
Google Scholar
[7]
R.G.J. C Heijkants, A.J. M Pennings, J. H De Groot, R.V. P Van Calck, Method for the preparation of new segmented polyurethanes with high tear and tensile strengths and method for making porous scaffolds, (2011), Orteq, B.V., Groningen (NL): US.
Google Scholar
[8]
S. M Mueller, S. Shortkroff, T. O Schneider, H. A Breinan, I. V Yannas, M. Spector, Meniscus cells seeded in type I and type II collagen-GAG matrices in vitro. Biomaterials, (1999). 20 (8): 701-709.
DOI: 10.1016/s0142-9612(98)00189-6
Google Scholar
[9]
P.C. M Verdonk, R. G Forsyth, J. Wang, K. F Almqvist, R. Verdonk, E. M Veys, G. Verbruggen, Characterisation of human knee meniscus cell phenotype. Osteoarthritis and Cartilage, (2005). 13 (7): 548-60.
DOI: 10.1016/j.joca.2005.01.010
Google Scholar
[10]
H. E Kambic, C. A McDevitt, Spatial organization of types I and II collagen in the canine meniscus. J. Ortho. Res., (2005). 23 (1): 142-49.
DOI: 10.1016/j.orthres.2004.06.016
Google Scholar
[11]
D. C Fithian, M. A Kelly, V. C Mow, Material properties and structure-function relationships in the menisci. Clin. Ortho. Related Res., (1990) (252): 19-31.
DOI: 10.1097/00003086-199003000-00004
Google Scholar
[12]
R. L Spilker, P. S Donzelli, V. C Mow, A transversely isotropic biphasic finite element model of the meniscus. J. Biomechanics, (1992). 25 (9): 1027-45.
DOI: 10.1016/0021-9290(92)90038-3
Google Scholar
[13]
J. J Ballyns, T. M Wright, L. J Bonassar, Effect of media mixing on ECM assembly and mechanical properties of anatomically-shaped tissue engineered meniscus. Biomaterials, (2010). 31 (26): 6756-6763.
DOI: 10.1016/j.biomaterials.2010.05.039
Google Scholar
[14]
G. Bellisari, W. Samora, K. Klingele, Meniscus tears in children. Sports Medicine and Arthroscopy Review, (2011). 19 (1): 50-55.
DOI: 10.1097/jsa.0b013e318204d01a
Google Scholar
[15]
M. Kazemi, L. P Li, P. Savard, M. D Buschmann, Creep behavior of the intact and meniscectomy knee joints. J. Mech. Behav. Biomed. Mater., (2011). 4 (7): 1351-58.
DOI: 10.1016/j.jmbbm.2011.05.004
Google Scholar
[16]
E. Kon, C. Chiari, M. Marcacci, M. Delcogliano, D. M Salter, I. Martin, L. Ambrosio, M. Fini, M. Tschon, E. Tognana, R. Plasenzotti, S. Nehrer, Tissue engineering for total meniscal substitution: Animal study in sheep model. Tiss. Eng. A., (2008).
DOI: 10.1089/ten.tea.2007.0193
Google Scholar
[17]
T. G Tienen, N. Verdonschot, R.G.J. C Heijkants, P. Buma, J.G. F Scholten, A. Van Kampen, R.P. H Veth, Prosthetic replacement of the medial meniscus in cadaveric knees: Does the prosthesis mimic the functional behavior of the native meniscus? Amer. J. Sports Medicine, (2004).
DOI: 10.1177/0363546503262160
Google Scholar
[18]
S. Eshraghi, S. Das, Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomaterialia, (2010).
DOI: 10.1016/j.actbio.2010.02.002
Google Scholar
[19]
K. Lechner, M. L Hull, S. M Howell, Is the circumferential tensile modulus within a human medial meniscus affected by the test sample location and cross-sectional area? J. Ortho. Res., (2000). 18 (6): 945-51.
DOI: 10.1002/jor.1100180614
Google Scholar
[20]
J. Klompmaker, H.W. B Jansen, R.P. H Veth, H.K. L Nielsen, J. H De Groot, A. J Pennings, Porous implants for knee joint meniscus reconstruction: A preliminary study on the role of pore sizes in ingrowth and differentiation of fibrocartilage. Clinical Materials, (1993).
DOI: 10.1016/0267-6605(93)90041-5
Google Scholar
[21]
H. Elema, J. H de Groot, A. J Nijenhuis, A. J Pennings, R.P. H Veth, J. Klompmaker, H.W. B Jansen, Use of porous biodegradable polymer implants in meniscus reconstruction. 2) Biological evaluation of porous biodegradable polymer implants in menisci. Colloid & Poly. Sci., (1990).
DOI: 10.1007/bf01410673
Google Scholar
[22]
A. Borzacchiello, A. Gloria, L. Mayol, S. Dickinson, S. Miot, I. Martin, L. Ambrosio, Natural/synthetic porous scaffold designs and properties for fibro-cartilaginous tissue engineering. J. Bioactive and Compatible Polymers, (2011).
DOI: 10.1177/0883911511420149
Google Scholar
[23]
N. K Galley, J. P Gleghorn, S. Rodeo, R. F Warren, S. A Maher, L. J Bonassar, Frictional Properties of the Meniscus Improve After Scaffold-augmented Repair of Partial Meniscectomy: A Pilot Study. Clin. Orthop. Relat. Res., (2011).
DOI: 10.1007/s11999-011-1854-6
Google Scholar
[24]
D. Mohn, M. Zehnder, T. Imfeld, W. J Stark, Radio-opaque nanosized bioactive glass for potential root canal application: Evaluation of radiopacity, bioactivity and alkaline capacity. Int. Endodontic Journal, (2010). 43 (3): 210-17.
DOI: 10.1111/j.1365-2591.2009.01660.x
Google Scholar
[25]
B. Nottelet, J. Coudane, M. Vert, Synthesis of an X-ray opaque biodegradable copolyester by chemical modification of poly (ε-caprolactone). Biomaterials, (2006). 27 (28): 4948-54.
DOI: 10.1016/j.biomaterials.2006.05.032
Google Scholar
[26]
M.A. B Kruft, F. H Van Der Veen, L. H Koole, In vivo tissue compatibility of two radio-opaque polymeric biomaterials. Biomaterials, (1997). 18 (1): 31-36.
DOI: 10.1016/s0142-9612(96)00085-3
Google Scholar
[27]
H. Watanabe, M. Kanematsu, T. Miyoshi, S. Goshima, H. Kondo, N. Moriyama, K. T Bae, Improvement of image quality of low radiation dose abdominal CT by increasing contrast enhancement. Amer. J. Roentgenology, (2010). 195 (4): 986-92.
DOI: 10.2214/ajr.10.4456
Google Scholar
[28]
K. D Brandt, J. A Block, J. P Michalski, L. W Moreland, J. R Caldwell, P. T Lavin, O. S Group, Efficacy and Safety of Intraarticular Sodium Hyaluronate in Knee Osteoarthritis. Clin. Orthop. Relat. Res., (2001). 385: 130-43.
DOI: 10.1097/00003086-200104000-00021
Google Scholar
[29]
N. Krithica, V. Natarajan, B. Madhan, P. K Sehgal, A. B Mandal, Type i collagen immobilized poly(caprolactone) nanofibers: Characterization of surface modification and growth of fibroblasts. Adv. Eng. Mater., (2012). 14 (4): B149-B154.
DOI: 10.1002/adem.201180035
Google Scholar
[30]
Y. Deng, J. C Hu, K. A Athanasiou, Isolation and chondroinduction of a dermis-isolated, aggrecan-sensitive subpopulation with high chondrogenic potential. Arthritis and Rheumatism, (2007). 56 (1): 168-76.
DOI: 10.1002/art.22300
Google Scholar
[31]
J. Sanchez-Adams, K. A Athanasiou, Dermis isolated adult stem cells for cartilage tissue engineering. Biomaterials, (2012). 33 (1): 109-19.
DOI: 10.1016/j.biomaterials.2011.09.038
Google Scholar
[32]
A. Parker, Development and Validation of a Novel Tissue Engineering System for Cartilage and Osteochondral Regeneration, in School of Aerospace, Mechanical and Mechatronic Engineering, 2010, University of Sydney: Sydney.
Google Scholar
[33]
S. Zaffagnini, M. Marcheggiani, M. Giulio, G. Giordano, D. Bruni, M. Nitri, T. Bonanzinga, G. Filardo, A. Russo, M. Marcacci, Synthetic meniscal scaffolds. Techniques in Knee Surgery, (2009). 8 (4): 251-56.
DOI: 10.1097/btk.0b013e3181b57fa7
Google Scholar
[34]
L. Zhang, M. Spector, Comparison of three types of chondrocytes in collagen scaffolds for cartilage tissue engineering. Biomedical Materials, (2009). 4 (4).
DOI: 10.1088/1748-6041/4/4/045012
Google Scholar
[35]
G. Peters, C. J Wirth, The current state of meniscal allograft transplantation and replacement. Knee, (2003). 10 (1): 19-31.
DOI: 10.1016/s0968-0160(02)00139-4
Google Scholar