A Novel Patient-Specific Regenerative Meniscal Replacement System

Article Preview

Abstract:

Knee meniscal injuries account for the greatest number of surgical procedures performed by orthopaedic surgeons worldwide. Each year in excess of 400,000 operations are performed in Europe and over one million in the United States and yet no suitable replacement for the meniscus is available. Fibrocartilage tissue engineering holds great potential in the regeneration of meniscal tissue however current developments have been limited. Difficulties in imitating the anisotropic nature of the meniscus, patient specific geometry, attaining sterility assurance requirements remain as developmental challenges for meniscal scaffold devices. A novel approach was developed to rapidly form terminally sterilized pre-packaged scaffold templates into anatomically matched regenerative meniscal implants. Formed meniscal implants exhibited the structural and functional architecture of the native meniscus. Meniscal implants fabricated using this method displayed mechanical properties approaching to that of the native meniscus and imparted rotational stability. Fixation techniques influenced the biomechanical response of implants and 45S5 bioactive glass modification was found to enhance radio-opacity of the scaffold. Biocompatibility of the implant was confirmed using a fibroblast cell culture model.

You might also be interested in these eBooks

Info:

Pages:

83-95

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.R. Noyes, S.D. Barber-Westin, Repair of complex and avascular meniscal tears and meniscal transplantation. Journal of Bone and Joint Surgery - Series A, (2010). 92 (4): 1012-1029.

Google Scholar

[2] K. A Athanasiou, J. Sanchez-Adams, Engineering the Knee Meniscus, ed. (2009): Morgan & Claypool.

Google Scholar

[3] R. Verdonk, P. Verdonk, W. Huysse, R. Forsyth, E. L Heinrichs, Tissue ingrowth after implantation of a novel, biodegradable polyurethane scaffold for treatment of partial meniscal lesions. American Journal of Sports Medicine, (2011).

DOI: 10.1177/0363546511398040

Google Scholar

[4] S. A Maher, S. A Rodeo, S. B Doty, R. Brophy, H. Potter, L. F Foo, L. Rosenblatt, X. H Deng, A. S Turner, T. M Wright, R. F Warren, Evaluation of a porous polyurethane scaffold in a partial meniscal defect ovine model. Arthroscopy, (2010).

DOI: 10.1016/j.arthro.2010.02.033

Google Scholar

[5] R. H Brophy, J. Cottrell, S. A Rodeo, T. M Wright, R. F Warren, S. A Maher, Implantation of a synthetic meniscal scaffold improves joint contact mechanics in a partial meniscectomy cadaver model. Journal of Biomedical Materials Research - Part A, (2010).

DOI: 10.1002/jbm.a.32384

Google Scholar

[6] S. A Maher, S. A Rodeo, H. G Potter, L. J Bonassar, T. M Wright, R. F Warren, A Pre-Clinical Test Platform for the Functional Evaluation of Scaffolds for Musculoskeletal Defects: The Meniscus. HSS Journal, (2011). 7 (2): 157-63.

DOI: 10.1007/s11420-010-9188-6

Google Scholar

[7] R.G.J. C Heijkants, A.J. M Pennings, J. H De Groot, R.V. P Van Calck, Method for the preparation of new segmented polyurethanes with high tear and tensile strengths and method for making porous scaffolds, (2011), Orteq, B.V., Groningen (NL): US.

Google Scholar

[8] S. M Mueller, S. Shortkroff, T. O Schneider, H. A Breinan, I. V Yannas, M. Spector, Meniscus cells seeded in type I and type II collagen-GAG matrices in vitro. Biomaterials, (1999). 20 (8): 701-709.

DOI: 10.1016/s0142-9612(98)00189-6

Google Scholar

[9] P.C. M Verdonk, R. G Forsyth, J. Wang, K. F Almqvist, R. Verdonk, E. M Veys, G. Verbruggen, Characterisation of human knee meniscus cell phenotype. Osteoarthritis and Cartilage, (2005). 13 (7): 548-60.

DOI: 10.1016/j.joca.2005.01.010

Google Scholar

[10] H. E Kambic, C. A McDevitt, Spatial organization of types I and II collagen in the canine meniscus. J. Ortho. Res., (2005). 23 (1): 142-49.

DOI: 10.1016/j.orthres.2004.06.016

Google Scholar

[11] D. C Fithian, M. A Kelly, V. C Mow, Material properties and structure-function relationships in the menisci. Clin. Ortho. Related Res., (1990) (252): 19-31.

DOI: 10.1097/00003086-199003000-00004

Google Scholar

[12] R. L Spilker, P. S Donzelli, V. C Mow, A transversely isotropic biphasic finite element model of the meniscus. J. Biomechanics, (1992). 25 (9): 1027-45.

DOI: 10.1016/0021-9290(92)90038-3

Google Scholar

[13] J. J Ballyns, T. M Wright, L. J Bonassar, Effect of media mixing on ECM assembly and mechanical properties of anatomically-shaped tissue engineered meniscus. Biomaterials, (2010). 31 (26): 6756-6763.

DOI: 10.1016/j.biomaterials.2010.05.039

Google Scholar

[14] G. Bellisari, W. Samora, K. Klingele, Meniscus tears in children. Sports Medicine and Arthroscopy Review, (2011). 19 (1): 50-55.

DOI: 10.1097/jsa.0b013e318204d01a

Google Scholar

[15] M. Kazemi, L. P Li, P. Savard, M. D Buschmann, Creep behavior of the intact and meniscectomy knee joints. J. Mech. Behav. Biomed. Mater., (2011). 4 (7): 1351-58.

DOI: 10.1016/j.jmbbm.2011.05.004

Google Scholar

[16] E. Kon, C. Chiari, M. Marcacci, M. Delcogliano, D. M Salter, I. Martin, L. Ambrosio, M. Fini, M. Tschon, E. Tognana, R. Plasenzotti, S. Nehrer, Tissue engineering for total meniscal substitution: Animal study in sheep model. Tiss. Eng. A., (2008).

DOI: 10.1089/ten.tea.2007.0193

Google Scholar

[17] T. G Tienen, N. Verdonschot, R.G.J. C Heijkants, P. Buma, J.G. F Scholten, A. Van Kampen, R.P. H Veth, Prosthetic replacement of the medial meniscus in cadaveric knees: Does the prosthesis mimic the functional behavior of the native meniscus? Amer. J. Sports Medicine, (2004).

DOI: 10.1177/0363546503262160

Google Scholar

[18] S. Eshraghi, S. Das, Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomaterialia, (2010).

DOI: 10.1016/j.actbio.2010.02.002

Google Scholar

[19] K. Lechner, M. L Hull, S. M Howell, Is the circumferential tensile modulus within a human medial meniscus affected by the test sample location and cross-sectional area? J. Ortho. Res., (2000). 18 (6): 945-51.

DOI: 10.1002/jor.1100180614

Google Scholar

[20] J. Klompmaker, H.W. B Jansen, R.P. H Veth, H.K. L Nielsen, J. H De Groot, A. J Pennings, Porous implants for knee joint meniscus reconstruction: A preliminary study on the role of pore sizes in ingrowth and differentiation of fibrocartilage. Clinical Materials, (1993).

DOI: 10.1016/0267-6605(93)90041-5

Google Scholar

[21] H. Elema, J. H de Groot, A. J Nijenhuis, A. J Pennings, R.P. H Veth, J. Klompmaker, H.W. B Jansen, Use of porous biodegradable polymer implants in meniscus reconstruction. 2) Biological evaluation of porous biodegradable polymer implants in menisci. Colloid & Poly. Sci., (1990).

DOI: 10.1007/bf01410673

Google Scholar

[22] A. Borzacchiello, A. Gloria, L. Mayol, S. Dickinson, S. Miot, I. Martin, L. Ambrosio, Natural/synthetic porous scaffold designs and properties for fibro-cartilaginous tissue engineering. J. Bioactive and Compatible Polymers, (2011).

DOI: 10.1177/0883911511420149

Google Scholar

[23] N. K Galley, J. P Gleghorn, S. Rodeo, R. F Warren, S. A Maher, L. J Bonassar, Frictional Properties of the Meniscus Improve After Scaffold-augmented Repair of Partial Meniscectomy: A Pilot Study. Clin. Orthop. Relat. Res., (2011).

DOI: 10.1007/s11999-011-1854-6

Google Scholar

[24] D. Mohn, M. Zehnder, T. Imfeld, W. J Stark, Radio-opaque nanosized bioactive glass for potential root canal application: Evaluation of radiopacity, bioactivity and alkaline capacity. Int. Endodontic Journal, (2010). 43 (3): 210-17.

DOI: 10.1111/j.1365-2591.2009.01660.x

Google Scholar

[25] B. Nottelet, J. Coudane, M. Vert, Synthesis of an X-ray opaque biodegradable copolyester by chemical modification of poly (ε-caprolactone). Biomaterials, (2006). 27 (28): 4948-54.

DOI: 10.1016/j.biomaterials.2006.05.032

Google Scholar

[26] M.A. B Kruft, F. H Van Der Veen, L. H Koole, In vivo tissue compatibility of two radio-opaque polymeric biomaterials. Biomaterials, (1997). 18 (1): 31-36.

DOI: 10.1016/s0142-9612(96)00085-3

Google Scholar

[27] H. Watanabe, M. Kanematsu, T. Miyoshi, S. Goshima, H. Kondo, N. Moriyama, K. T Bae, Improvement of image quality of low radiation dose abdominal CT by increasing contrast enhancement. Amer. J. Roentgenology, (2010). 195 (4): 986-92.

DOI: 10.2214/ajr.10.4456

Google Scholar

[28] K. D Brandt, J. A Block, J. P Michalski, L. W Moreland, J. R Caldwell, P. T Lavin, O. S Group, Efficacy and Safety of Intraarticular Sodium Hyaluronate in Knee Osteoarthritis. Clin. Orthop. Relat. Res., (2001). 385: 130-43.

DOI: 10.1097/00003086-200104000-00021

Google Scholar

[29] N. Krithica, V. Natarajan, B. Madhan, P. K Sehgal, A. B Mandal, Type i collagen immobilized poly(caprolactone) nanofibers: Characterization of surface modification and growth of fibroblasts. Adv. Eng. Mater., (2012). 14 (4): B149-B154.

DOI: 10.1002/adem.201180035

Google Scholar

[30] Y. Deng, J. C Hu, K. A Athanasiou, Isolation and chondroinduction of a dermis-isolated, aggrecan-sensitive subpopulation with high chondrogenic potential. Arthritis and Rheumatism, (2007). 56 (1): 168-76.

DOI: 10.1002/art.22300

Google Scholar

[31] J. Sanchez-Adams, K. A Athanasiou, Dermis isolated adult stem cells for cartilage tissue engineering. Biomaterials, (2012). 33 (1): 109-19.

DOI: 10.1016/j.biomaterials.2011.09.038

Google Scholar

[32] A. Parker, Development and Validation of a Novel Tissue Engineering System for Cartilage and Osteochondral Regeneration, in School of Aerospace, Mechanical and Mechatronic Engineering, 2010, University of Sydney: Sydney.

Google Scholar

[33] S. Zaffagnini, M. Marcheggiani, M. Giulio, G. Giordano, D. Bruni, M. Nitri, T. Bonanzinga, G. Filardo, A. Russo, M. Marcacci, Synthetic meniscal scaffolds. Techniques in Knee Surgery, (2009). 8 (4): 251-56.

DOI: 10.1097/btk.0b013e3181b57fa7

Google Scholar

[34] L. Zhang, M. Spector, Comparison of three types of chondrocytes in collagen scaffolds for cartilage tissue engineering. Biomedical Materials, (2009). 4 (4).

DOI: 10.1088/1748-6041/4/4/045012

Google Scholar

[35] G. Peters, C. J Wirth, The current state of meniscal allograft transplantation and replacement. Knee, (2003). 10 (1): 19-31.

DOI: 10.1016/s0968-0160(02)00139-4

Google Scholar