Characterization and Degradation Behaviour of Anodized Magnesium-Hydroxyapatite Metal Matrix Composites

Article Preview

Abstract:

Recently, magnesium (Mg) alloys have inspired a significant amount of attention from researchers all over the world for implant applications due to their light weight, mechanical integrity and degradation behaviour. The major concerns with Mg implants are its rapid and non-uniform degradation, which can increase the risk of leached ions and can cause premature failure. In this study, Mg based alloys/metal matrix composites (MgZnCa/HA) were mechanically and electrochemically (anodized) surface treated. In-vitro corrosion tests revealed that the addition of hydroxyapatite (HA) and anodizing, stabilizes the corrosion process and lowers hydrogen evolution. Evidence of reduced degradation was provided by the presence of a relatively smooth surface morphology after corrosion. Furthermore, exposure of leached ions on osteoblast cells indicated good cytocompatibility.

You might also be interested in these eBooks

Info:

Pages:

55-69

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Gill, N. Munroe, R. Dua, S. Ramaswamy. Corrosion and Biocompatibility Assessment of Magnesium Alloys. Journal of Biomaterials and Nanobiotechnology, (2012), 3, 10-13.

DOI: 10.4236/jbnb.2012.31002

Google Scholar

[2] C. K Seal, K. Vince, M. A Hodgson. Biodegradable surgical implants based on magnesium alloys - A review of current research. IOP Conf. Series : Materials Science and Engineering, (2009), 4 (1), 012011.

DOI: 10.1088/1757-899x/4/1/012011

Google Scholar

[3] Z. Li. Mg/Hydroxyapatite composites for potential bio-medical applications, (2010), Thesis submitted for the degree of M. Phil at the Brunel University.

Google Scholar

[4] X. Ye, M. Chen, M. Yang, J. Wei, D. Liu. In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg-Zn-Zr composites. J Mater. Sci.: Mater. Med., (2010), 21, 1321-28.

DOI: 10.1007/s10856-009-3954-3

Google Scholar

[5] W. Wacker, A. Parisi, Magnesium metabolism. N. Engl. J. Med., (1968) 278, 712-17.

Google Scholar

[6] K. W Guo. A Review of Magnesium/Magnesium Alloys Corrosion and its Protection. Recent Patents on Corrosion Science, (2010), 2, 13-21.

DOI: 10.2174/1877610801002010013

Google Scholar

[7] A. C Hänzi, I. Gerber, M. Schinhammer, J. F Löffler, P. J Uggowitzer. On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys. Acta Biomater., (2010), 6 (5), 1824-33.

DOI: 10.1016/j.actbio.2009.10.008

Google Scholar

[8] ASTM G102-89 (1999), Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements. DOI: 10. 1520/G0102-89R99.

Google Scholar

[9] ASTM G31-72 (2004), Standard Practice for Laboratory Immersion Corrosion Testing of Metals. DOI: 10. 1520/G0031-72R04.

Google Scholar

[10] L. Xu, E. Zhang, D. Yin, S. Zeng, K. Yang, In vitro corrosion behaviour of Mg alloys in a phosphate buffered solution for bone implant application, J Mater Sci: Mater Med., (2008), 19, 1017-25.

DOI: 10.1007/s10856-007-3219-y

Google Scholar

[11] P. Gill, N. Munroe. In-vitro corrosion studies of bioabsorbable alloys. In: Magnesium Technology 2012, (eds S. N Mathaudhu, W. H Sillekens, N. R Neelameggham, N. Hort), John Wiley & Sons, Inc., Hoboken, NJ, USA.

DOI: 10.1002/9781118359228.ch87

Google Scholar

[12] Z. Li, X. Gu, S. Lou, Y. Zheng. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials (2008), 29 (10), 1329-44.

DOI: 10.1016/j.biomaterials.2007.12.021

Google Scholar

[13] X. B Tian, C. B Wei, S. Q Yang, F.K. Y Fu, P. K Chu. Corrosion Resistance improvement of Magnesium alloy using nitrogen plasma ion implantation. Surf Coat. Technol., (2005), 198 (1-3), 454-58.

DOI: 10.1016/j.surfcoat.2004.10.117

Google Scholar

[14] Xin Yunchang, Degradation mechanism and surface modification of biomedical magnesium alloy. PhD thesis, City University of Hong Kong, August (2009).

Google Scholar

[15] Z. Shi, G. Song, A. Atrens. The corrosion performance of anodized magnesium alloys. Corrosion Science, (2006), 48 (11), 3531-46.

DOI: 10.1016/j.corsci.2006.02.008

Google Scholar

[16] C. O Brubaker, Z. K Liu. A computational thermodynamic model of the Ca-Mg-Zn system. J. Alloys Compd., (2004), 370 (1-2), 114-22.

DOI: 10.1016/j.jallcom.2003.08.097

Google Scholar

[17] Z. Tao, C. Ding, C. Zhen-Hua: Microstructures and properties of rapidly solidified Mg-Zn-Ca alloys. Trans. Nonferrous Met. Soc. China, 2008, 18, 101-106.

DOI: 10.1016/s1003-6326(10)60183-5

Google Scholar

[18] B. Feng, J. Y Chen, S. K Qi, L. He, J. Z Zhao, X. D Zhang. Characterization of surface oxide films on titanium and bioactivity. J. Mater. Sci. Mater. Med., (2002), 13, 457-64.

Google Scholar

[19] J. M Schakenraad, H. C van der Mei, P. G Rouxhet, H. J Busscher. Characterization of eukaryotic cell surfaces prior to and after serum protein adsorption by X-ray photoelectron spectroscopy fibroblasts, HELA epithelial and smooth muscle cells. Cell Biochem. Biophys., (1992).

DOI: 10.1007/bf02782654

Google Scholar

[20] P. Gill, N. Munroe, R. Dua, S. Ramaswamy. In-vitro Degradation and Cytocompatibility Assessment of Mg-Zn and Mg-Zn-Ca Alloys. Materials and Processes for Medical Devices (MPMD), Aug 8-10, 2011, MN, USA.

Google Scholar

[21] M. Alvarez-Lopez, M. D Pereda, J. A de Valle, M. Fernandez-Lorenzo, M. C Garcia-Alonso, O. A Ruano, M. L Escudero. Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. Acta Biomaterialia, (2010).

DOI: 10.1016/j.actbio.2009.04.041

Google Scholar

[22] G. Song, S. Song. A Possible Biodegradable Magnesium Implant Material. Adv. Eng. Mater., (2007), 9 (4), 298-302.

DOI: 10.1002/adem.200600252

Google Scholar

[23] L. L Li, Y. L Cheng, H. M Wang, Z. Zhang. Anodization of AZ91 magnesium alloy in alkaline solution containing silicate and corrosion properties of anodized films. Trans Nonferrous Met Soc China, (2008), 18 (3), 722-27.

DOI: 10.1016/s1003-6326(08)60124-7

Google Scholar

[24] G. Song. Control of biodegradation of biocompatible magnesium alloys. Corrosion Science, (2007), 49 (4), 1696-1701.

DOI: 10.1016/j.corsci.2007.01.001

Google Scholar

[25] B. Zberg, P. J Uggowitzer, J. F Löffler. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nature Materials, (2009), 8, 887-91.

DOI: 10.1038/nmat2542

Google Scholar

[26] M. P Staiger, A. M Pietak, J. Huadmai, G. Dias. Magnesium and its alloys as orthopaedic biomaterials: A review. Biomaterials, (2006), 27 (9), 1728-34.

DOI: 10.1016/j.biomaterials.2005.10.003

Google Scholar

[27] X. Gu, Y. Zheng, Y. Cheng, S. Zhong, T. Xi. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials, (2009), 30 (4), 484-98.

DOI: 10.1016/j.biomaterials.2008.10.021

Google Scholar

[28] M. Bodansky. The effect of hydrogen ion concentration on saponin haemolysis. J Biol. Chem., (1929), 82 (3), 567-77.

Google Scholar

[29] Y. Wang, C. S Lim, C. V Lim, M. S Yong, E. K Teo, L. N Moh. In vitro degradation behaviour of M1A magnesium alloy in protein-containing simulated body fluid. Materials Science and Engineering C, (2011), 31 (3), 579-587.

DOI: 10.1016/j.msec.2010.11.017

Google Scholar

[30] S. Oh, C. Daraio, L. H Chen, T. R Pisanic, R. R Finones, S. Jin. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J. Biomed. Mater. Res. Part A, (2006), 78A (1), 97-103.

DOI: 10.1002/jbm.a.30722

Google Scholar

[31] P. Gill. Assessment of Biodegradable Magnesium Alloys for Enhanced Mechanical and Biocompatible Properties. FIU Electronic Theses and Dissertations, (2012). Paper 714.

Google Scholar