Microstructure, Mechanical and Corrosion Properties of Mg-Y-Ca-Zn Alloy for Biomedical Applications

Article Preview

Abstract:

Y, Zn and Ca were selected to develop a Magnesium alloy, Mg-Y-Ca-Zn for biomedical application due to the good biocompatibility of Zn and Ca elements. Microstructure, mechanical properties and corrosion properties of the Mg-Y-Ca-Zn alloy have been investigated using both optical and scanning electron microscope. In the as-cast condition, primary α-Mg matrix and second phase are mainly distributed along grain boundary. After solution treatment, the distribution of second phase decreased and after aging, there are many second phases precipitated along the grain boundary and inside the grains. The hardness of as-cast samples was low and increased after solution treatment and aging. An aged sample had more corrosion resistance than as-cast and solution treatment alloys.

You might also be interested in these eBooks

Info:

Pages:

45-51

Citation:

Online since:

June 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.D Mueller, M. Lucia Nascimento, M. F Lorenzo de Mele. Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications. Acta Biomaterialia, (2010), 6 (5), 1749-55.

DOI: 10.1016/j.actbio.2009.12.048

Google Scholar

[2] M.P Staiger, A.M Pietak, J. Huadmai, G. Dias. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, (2006), 27 (9), 1728-34.

DOI: 10.1016/j.biomaterials.2005.10.003

Google Scholar

[3] F. Witte, N. Hort, C. Vogt, S. Cohen, K.U Kainer, R. Willumeit, F. Feyerabend. Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, (2008), 12 (5-6), 63-72.

DOI: 10.1016/j.cossms.2009.04.001

Google Scholar

[4] S. Hiromoto, M. Tomozawa. Hydroxyapatite coating of AZ31 magnesium alloy by a solution treatment and its corrosion behaviour in NaCl solution. Surf. Coat. Tech., (2011), 205 (19), 4711-19.

DOI: 10.1016/j.surfcoat.2011.04.036

Google Scholar

[5] A. Roy, S.S Singh, M.K Datta, B. Lee, J. Ohodnicki, P.N Kumta. Novel sol-gel derived calcium phosphate coatings on Mg4Y alloy. Mater. Sci. Eng. B, (2011), 176 (20), 1679-89.

DOI: 10.1016/j.mseb.2011.08.007

Google Scholar

[6] Z. Shi, G. Song, A. Atrens. The corrosion performance of anodized magnesium alloys. Corrosion Science, (2006), 48 (11), 3531-46.

DOI: 10.1016/j.corsci.2006.02.008

Google Scholar

[7] G. Song. Control of biodegradation of biocompatable magnesium alloys. Corrosion Science, (2007), 49 (4), 1696-1701.

DOI: 10.1016/j.corsci.2007.01.001

Google Scholar

[8] K. Murakami, M. Hino, K. Nakai, S. Kobayashi, A. Saijo, T. Kanadani. Mechanism of Corrosion Protection of Anodized Magnesium Alloys. Mater. Trans., (2008), 49 (5), 1057-64.

DOI: 10.2320/matertrans.mc200718

Google Scholar

[9] S. Fukumoto, K. Sugahara, A. Yamamoto, H. Tsubakino. Improvement of corrosion resistance and adhesion of coating layer for magnesium alloy coated with high purity magnesium. Mater. Trans., (2003), 44 (4), 518-23.

DOI: 10.2320/matertrans.44.518

Google Scholar

[10] M. Alvarez-Lopez, M.D Pereda, J.A Del Valle, M. Fernandez-Lorenzo, M.C Garcia-Alonso, O.A Ruano, M.L Escudero. Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. Acta Biomaterialia, (2010), 6 (5), 1763-71.

DOI: 10.1016/j.actbio.2009.04.041

Google Scholar

[11] Y. Zong, G. Yuan, X. Zhang, L. Mao, J. Niu, W. Ding. Comparison of biodegradable behaviours of AZ31 and Mg-Nd-Zn-Zr alloys in Hank's physiological solution. Mater. Sci. Eng. B, (2012), 177 (5), 395-401.

DOI: 10.1016/j.mseb.2011.09.042

Google Scholar

[12] X.P Zhang, Z.P Zhao, F.M Wu, Y.L Wang, J. Wu. Corrosion and wear resistance of AZ91D magnesium alloy with and without microarc oxidation coating in Hank's solution. J. Mater. Sci., (2007), 42 (20), 8523-28.

DOI: 10.1007/s10853-007-1738-z

Google Scholar

[13] X.N Gu, W.R Zhou, Y.F Zheng, Y. Cheng, S.C Wei, S.P Zhong, T.F Xi, L.J Chen. Corrosion fatigue behaviours of two biomedical Mg alloys - AZ91D and WE43 - in simulated body fluid. Acta Biomaterialia, (2010), 6 (12), 4605-13.

DOI: 10.1016/j.actbio.2010.07.026

Google Scholar

[14] Z. Li, X. Gu, S. Lou, Y. Zheng. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials, (2008), 29 (10), 1329-44.

DOI: 10.1016/j.biomaterials.2007.12.021

Google Scholar

[15] W-C Kim, J-G Kim, J-Y Lee, H-K Seok. Influence of Ca on the corrosion properties of magnesium for biomaterials. Materials Letters, (2008), 62 (25), 4146-48.

DOI: 10.1016/j.matlet.2008.06.028

Google Scholar

[16] X.B Chen, N.T Kirkland, H. Krebs, M.A Thiriat, S. Virtanen, D. Nisbet, N. Birbilis. In vitro corrosion survey of Mg-xCa and Mg-3Zn-yCa alloys with and without calcium phosphate conversion coatings. Corrosion Eng., Science and Technology, (2012), 47 (5), 365-73.

DOI: 10.1179/1743278212y.0000000019

Google Scholar

[17] N. Hort, Y. Huang, D. Fechner, M. Störmer, C. Blawert, F. Witte, C. Vogt, H. Drücker, R. Willumeit, K.U Kainer, F. Feyerabend. Magnesium alloys as implant materials - Principles of property design for Mg-RE alloys. Acta Biomaterialia, (2010), 6 (5), 1714-25.

DOI: 10.1016/j.actbio.2009.09.010

Google Scholar

[18] Q. Peng, Y. Huang, L. Zhou, N. Hort, K.U Kainer. Preparation and properties of high purity Mg-Y biomaterials. Biomaterials, (2010), 31 (3), 398-403.

DOI: 10.1016/j.biomaterials.2009.09.065

Google Scholar

[19] L. Yang, Y. Huang, Q. Peng, F. Feyerabend, K.U Kainer, R. Willumeit, N. Hort. Mechanical and corrosion properties of binary Mg-Dy alloys for medical applications. Mater. Sci. Eng. B, (2011), 176 (20), 1827-34.

DOI: 10.1016/j.mseb.2011.02.025

Google Scholar

[20] G. Song, A. Atrens, M. Dargusch. Influence of microstructure on the corrosion of diecast AZ91D. Corrosion Science, (1998), 41 (2), 249-73.

DOI: 10.1016/s0010-938x(98)00121-8

Google Scholar

[21] S. Cai, T. Lei, N. Li, F. Feng. Effects of Zn on microstructure, mechanical properties and corrosion behaviour of Mg-Zn alloys. Mater. Sci. Eng. C, (2012), 32 (8), 2570-77.

DOI: 10.1016/j.msec.2012.07.042

Google Scholar

[22] H. Westengen, L.Y Wei, T. Aune, D. Albright. Effect of intermediate temperature ageing on mechanical properties and microstructure of die-cast AM-alloys. Werkstoff-Informations- gesellschaft mbH, Magnesium Alloys and their Applications, (Germany), (1998), 209-214.

Google Scholar

[23] G. Song, A.L Bowles, D.H StJohn. Corrosion resistance of aged die cast magnesium alloy AZ91D, Mater. Sci. Eng. A, (2004), 366 (1), 74-86.

DOI: 10.1016/j.msea.2003.08.060

Google Scholar