[1]
W.D Mueller, M. Lucia Nascimento, M. F Lorenzo de Mele. Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications. Acta Biomaterialia, (2010), 6 (5), 1749-55.
DOI: 10.1016/j.actbio.2009.12.048
Google Scholar
[2]
M.P Staiger, A.M Pietak, J. Huadmai, G. Dias. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, (2006), 27 (9), 1728-34.
DOI: 10.1016/j.biomaterials.2005.10.003
Google Scholar
[3]
F. Witte, N. Hort, C. Vogt, S. Cohen, K.U Kainer, R. Willumeit, F. Feyerabend. Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, (2008), 12 (5-6), 63-72.
DOI: 10.1016/j.cossms.2009.04.001
Google Scholar
[4]
S. Hiromoto, M. Tomozawa. Hydroxyapatite coating of AZ31 magnesium alloy by a solution treatment and its corrosion behaviour in NaCl solution. Surf. Coat. Tech., (2011), 205 (19), 4711-19.
DOI: 10.1016/j.surfcoat.2011.04.036
Google Scholar
[5]
A. Roy, S.S Singh, M.K Datta, B. Lee, J. Ohodnicki, P.N Kumta. Novel sol-gel derived calcium phosphate coatings on Mg4Y alloy. Mater. Sci. Eng. B, (2011), 176 (20), 1679-89.
DOI: 10.1016/j.mseb.2011.08.007
Google Scholar
[6]
Z. Shi, G. Song, A. Atrens. The corrosion performance of anodized magnesium alloys. Corrosion Science, (2006), 48 (11), 3531-46.
DOI: 10.1016/j.corsci.2006.02.008
Google Scholar
[7]
G. Song. Control of biodegradation of biocompatable magnesium alloys. Corrosion Science, (2007), 49 (4), 1696-1701.
DOI: 10.1016/j.corsci.2007.01.001
Google Scholar
[8]
K. Murakami, M. Hino, K. Nakai, S. Kobayashi, A. Saijo, T. Kanadani. Mechanism of Corrosion Protection of Anodized Magnesium Alloys. Mater. Trans., (2008), 49 (5), 1057-64.
DOI: 10.2320/matertrans.mc200718
Google Scholar
[9]
S. Fukumoto, K. Sugahara, A. Yamamoto, H. Tsubakino. Improvement of corrosion resistance and adhesion of coating layer for magnesium alloy coated with high purity magnesium. Mater. Trans., (2003), 44 (4), 518-23.
DOI: 10.2320/matertrans.44.518
Google Scholar
[10]
M. Alvarez-Lopez, M.D Pereda, J.A Del Valle, M. Fernandez-Lorenzo, M.C Garcia-Alonso, O.A Ruano, M.L Escudero. Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. Acta Biomaterialia, (2010), 6 (5), 1763-71.
DOI: 10.1016/j.actbio.2009.04.041
Google Scholar
[11]
Y. Zong, G. Yuan, X. Zhang, L. Mao, J. Niu, W. Ding. Comparison of biodegradable behaviours of AZ31 and Mg-Nd-Zn-Zr alloys in Hank's physiological solution. Mater. Sci. Eng. B, (2012), 177 (5), 395-401.
DOI: 10.1016/j.mseb.2011.09.042
Google Scholar
[12]
X.P Zhang, Z.P Zhao, F.M Wu, Y.L Wang, J. Wu. Corrosion and wear resistance of AZ91D magnesium alloy with and without microarc oxidation coating in Hank's solution. J. Mater. Sci., (2007), 42 (20), 8523-28.
DOI: 10.1007/s10853-007-1738-z
Google Scholar
[13]
X.N Gu, W.R Zhou, Y.F Zheng, Y. Cheng, S.C Wei, S.P Zhong, T.F Xi, L.J Chen. Corrosion fatigue behaviours of two biomedical Mg alloys - AZ91D and WE43 - in simulated body fluid. Acta Biomaterialia, (2010), 6 (12), 4605-13.
DOI: 10.1016/j.actbio.2010.07.026
Google Scholar
[14]
Z. Li, X. Gu, S. Lou, Y. Zheng. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials, (2008), 29 (10), 1329-44.
DOI: 10.1016/j.biomaterials.2007.12.021
Google Scholar
[15]
W-C Kim, J-G Kim, J-Y Lee, H-K Seok. Influence of Ca on the corrosion properties of magnesium for biomaterials. Materials Letters, (2008), 62 (25), 4146-48.
DOI: 10.1016/j.matlet.2008.06.028
Google Scholar
[16]
X.B Chen, N.T Kirkland, H. Krebs, M.A Thiriat, S. Virtanen, D. Nisbet, N. Birbilis. In vitro corrosion survey of Mg-xCa and Mg-3Zn-yCa alloys with and without calcium phosphate conversion coatings. Corrosion Eng., Science and Technology, (2012), 47 (5), 365-73.
DOI: 10.1179/1743278212y.0000000019
Google Scholar
[17]
N. Hort, Y. Huang, D. Fechner, M. Störmer, C. Blawert, F. Witte, C. Vogt, H. Drücker, R. Willumeit, K.U Kainer, F. Feyerabend. Magnesium alloys as implant materials - Principles of property design for Mg-RE alloys. Acta Biomaterialia, (2010), 6 (5), 1714-25.
DOI: 10.1016/j.actbio.2009.09.010
Google Scholar
[18]
Q. Peng, Y. Huang, L. Zhou, N. Hort, K.U Kainer. Preparation and properties of high purity Mg-Y biomaterials. Biomaterials, (2010), 31 (3), 398-403.
DOI: 10.1016/j.biomaterials.2009.09.065
Google Scholar
[19]
L. Yang, Y. Huang, Q. Peng, F. Feyerabend, K.U Kainer, R. Willumeit, N. Hort. Mechanical and corrosion properties of binary Mg-Dy alloys for medical applications. Mater. Sci. Eng. B, (2011), 176 (20), 1827-34.
DOI: 10.1016/j.mseb.2011.02.025
Google Scholar
[20]
G. Song, A. Atrens, M. Dargusch. Influence of microstructure on the corrosion of diecast AZ91D. Corrosion Science, (1998), 41 (2), 249-73.
DOI: 10.1016/s0010-938x(98)00121-8
Google Scholar
[21]
S. Cai, T. Lei, N. Li, F. Feng. Effects of Zn on microstructure, mechanical properties and corrosion behaviour of Mg-Zn alloys. Mater. Sci. Eng. C, (2012), 32 (8), 2570-77.
DOI: 10.1016/j.msec.2012.07.042
Google Scholar
[22]
H. Westengen, L.Y Wei, T. Aune, D. Albright. Effect of intermediate temperature ageing on mechanical properties and microstructure of die-cast AM-alloys. Werkstoff-Informations- gesellschaft mbH, Magnesium Alloys and their Applications, (Germany), (1998), 209-214.
Google Scholar
[23]
G. Song, A.L Bowles, D.H StJohn. Corrosion resistance of aged die cast magnesium alloy AZ91D, Mater. Sci. Eng. A, (2004), 366 (1), 74-86.
DOI: 10.1016/j.msea.2003.08.060
Google Scholar