Biocompatibility Assessment of Novel Bioresorbable Alloys Mg-Zn-Se and Mg-Zn-Cu for Endovascular Applications: In Vitro Studies

Article Preview

Abstract:

Previous studies have shown that using biodegradable magnesium alloys such as Mg-Zn and Mg-Zn-Al possess the appropriate mechanical properties and biocompatibility to serve in a multitude of biological applications ranging from endovascular to orthopaedic and fixation devices. The objective of this study was to evaluate the biocompatibility of novel as-cast magnesium alloys Mg-1Zn-1Cu wt.% and Mg-1Zn-1Se wt.% as potential implantable biomedical materials, and compare their biologically effective properties to a binary Mg-Zn alloy. The cytotoxicity of these experimental alloys was evaluated using a tetrazolium based-MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay and a lactate dehydrogenase membrane integrity assay (LDH). The MTS assay was performed on extract solutions obtained from a 30-day period of alloy immersion and agitation in simulated body fluid to evaluate the major degradation products eluted from the alloy materials. Human foreskin fibroblast cell growth on the experimental magnesium alloys was evaluated for a 72 hour period, and cell death was quantified by measuring lactate dehydrogenase concentrations. Both Mg-Zn-Se and Mg-Zn-Cu alloys exhibit low cytotoxicity levels which are suitable for biomaterial applications. The Mg-Zn-Cu alloy was found to completely degrade within 72 hours, resulting in lower human foreskin fibroblast cell viability. The Mg-Zn-Se alloy was shown to be less cytotoxic than both the Mg-Zn-Cu and Mg-Zn alloys.

You might also be interested in these eBooks

Info:

Pages:

25-43

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Moravej, D. Mantovani. Biodegradable metals for cardiovascular stent application: interest and new opportunities. Int. J. Mol. Sci., (2011), 12 (7), 4250-70.

DOI: 10.3390/ijms12074250

Google Scholar

[2] E. Ma, J. Xu. Biodegradable Alloys: The glass window of opportunities. Nature Materials, (2009), 8, 855-57.

Google Scholar

[3] H. Hermawan, D. Dubé, D. Mantovani. Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents. J. Biomed. Mater. Res. A, (2010), 93(1), 1-11.

DOI: 10.1002/jbm.a.32224

Google Scholar

[4] B. Liu, Y.F Zheng, L. Ruan. In-vitro investigation of Fe30MnSi shape memory alloy as a potential biodegradable material. Materials Letters, (2011), 65, 540-543.

DOI: 10.1016/j.matlet.2010.10.068

Google Scholar

[5] A. Lendlein, A.T Neffe, B.F Pierce, J. Vienken. Why are so few degradable polymeric biomaterials currently established in clinical applications? Int. J. Artif. Organs, (2011), 34 (2), 71-75.

DOI: 10.5301/ijao.2011.6422

Google Scholar

[6] D. Persaud-Sharma, A. McGoron. Biodegradable magnesium alloys: a review of material development and applications. J. Biomim., Biomater. Tiss. Eng., (2012), 12, 25-39.

DOI: 10.4028/www.scientific.net/jbbte.12.25

Google Scholar

[7] Z.G Huan, M.A Leeflang, J. Zhou, L.E Fratila-Apachitei, J. Duszczyk. In-vitro degradation behavior and cytocompatibility of Mg-Zn-Zr alloys. J. Mater. Sci.: Mater. Med., (2010), 21 (9), 2623-35.

DOI: 10.1007/s10856-010-4111-8

Google Scholar

[8] V.M Babkin. Effect of zirconium on the grain size of magnesium containing 4.5% Zn. Metal Sci. Heat Treat., (1963), 5 (9), 543-44.

DOI: 10.1007/bf00648969

Google Scholar

[9] J.M Benson. Safety considerations when handling metal powders. J. South African Instit. Mining and Metallurgy, (2012), 112 (7), 563-75.

Google Scholar

[10] M. Rederstoff, A. Krol, A. Lescure. Understanding the importance of selenium and selenoproteins in muscle function. Cell. Mol Life Sci., (2006), 63 (1), 52-9.

DOI: 10.1007/s00018-005-5313-y

Google Scholar

[11] D.L Hartfield. Introduction to Selenium, Selenium: Its Molecular Biology and Role in Human Health. (2001). Springer, Boston.

Google Scholar

[12] J.R Turnlund. Copper, in: M.E Shils, M. Shike, A.C Ross, B. Caballero, R.J Cousins. Modern Nutrition in Health and Disease. 10th edition. Philadelphia: Lippincott, Williams & Wilkins. (2005), 286-99.

Google Scholar

[13] M.Angelova, S. Asenova, V. Nedkova, R. Koleva-Kolarova. Copper in the Human Organism. Trakia J. Sciences, (2011), 9 (1), 88-98.

Google Scholar

[14] D. Persaud-Sharma, N. Budiansky, A. McGoron. Mechanical properties and tensile failure analysis of novel-bioabsorbable Mg-Zn-Cu and Mg-Zn-Se Alloys for endovascular applications. Metals, (2013), 3, 23-40.

DOI: 10.3390/met3010023

Google Scholar

[15] L.M Gaetke, C.K Chow. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology, (2003), 189 (1-2), 147-63.

DOI: 10.1016/s0300-483x(03)00159-8

Google Scholar

[16] R. Alvarez, H. Martin, M.F Horstemeyer, M. Chandler, N. Williams, P. Wang, A. Ruiz. Corrosion relationship as a function of time and surface roughness on a structural AE44 Magnesium alloy. Corrosion Sci., (2010), 52 (5), 1635-48.

DOI: 10.1016/j.corsci.2010.01.018

Google Scholar

[17] R. Walter, B. Kannan. Influence of surface roughness on the corrosion behavior of magnesium alloy. Mater. and Design, (2011), 32 (4), 2350-54.

Google Scholar

[18] D. Persaud-Sharma, N. Munroe, A.J McGoron. Electro and magneto-electropolished surface micro-patterning on binary and ternary Nitinol. Trends Biomater. Artif. Organs, (2012), 26 (2), 74-85.

Google Scholar

[19] P.C Hiemenz, R. Rajagopolan. Principles of Colloid and Surface Chemistry, (1997), 3rd Edition, Marcel Dekker, Inc.

Google Scholar

[20] K. Grundke. Wetting, Spreading, and Penetration, in: Handbook of Applied Surface and Colloid Chemistry. (2002), K. Holmberg, Editor, John Wiley & Sons, Ltd.

Google Scholar

[21] T. Young. An Essay on the Cohesion of Fluids. Philosophical Transactions of the Royal Society of London. (1805), 95, 65-87.

DOI: 10.1098/rstl.1805.0005

Google Scholar

[22] R.N Wenzel. Resistance of Solid Surfaces to wetting by Water. Ind. Eng Chem., (1936), 28 (8), 988-94.

Google Scholar

[23] A.B.D Cassie, S. Baxter. Wettability of Porous Surfaces. Trans. Faraday Soc., (1944), 40, 546-51.

DOI: 10.1039/tf9444000546

Google Scholar

[24] D. Chen, Y. He, H. Tao, Y. Zhang, Y. Jiang, X. Zhang, S. Zhang. Biocompatibility of magnesium-zinc alloy in biodegradable orthopedic implants. Int. J. Mol. Med., (2011), 28 (3), 343-48.

DOI: 10.3892/ijmm.2011.707

Google Scholar

[25] G.J Brewer. The risks of copper-toxicity contributing to cognitive decline in the aging population and to Alzheimer's disease. J. Am. Coll. Nutr., (2009), 28 (3), 238-42.

Google Scholar

[26] A.P Marques, R.L Reis, J.A Hunt. The biocompatibility of novel starch-based polymers and composites: in-vitro studies. Biomater., (2003), 23 (6), 1471-78.

DOI: 10.1016/s0142-9612(01)00272-1

Google Scholar

[27] I.S Berglund, H.S Brar, N. Dolgova, A.P Acharya, B.G Keselowsky, M. Sarntinoranont, M.V Manuel. Synthesis and Characterization of Mg-Ca-Sr alloys for biodegradable orthopedic implant applications. J. Biomed. Mater. Res. B Appl. Biomater., (2012), 100 (6), 1524-34.

DOI: 10.1002/jbm.b.32721

Google Scholar

[28] M. Bornapour, N. Muja, D. Shum-Tim, M. Cerruti, M. Pekguleryuz. Biocompatibility and biodegradability of Mg-Sr alloys: The formation of Sr-substituted hydroxyapatite. Acta Biomater., (2013), 9 (2), 5319-30.

DOI: 10.1016/j.actbio.2012.07.045

Google Scholar

[29] S. Itoh, H. Kim, O. Nakagawa, K. Ozumi, S. Lessner, H. Aoki, K. Akram, R. McKinney, M. Ushio-Fukai, T. Fukai. Novel role of antioxidant-1 (Atox1) as a copper-dependent transcription factor involved in cell proliferation. J. Biol. Chem., (2008), 283 (14), 9157-67.

DOI: 10.1074/jbc.m709463200

Google Scholar

[30] S. Keim, J. Brunner, B. Fabry, S. Virtanen. Control of magnesium corrosion and biocompatibility with biomimetic coatings. J. Biomed. Mater. Res. B App. Biomater., (2011), 96 (1), 84-90.

DOI: 10.1002/jbm.b.31742

Google Scholar

[31] R.E Baier, A.E Meyer, J.R Natiella, R.R Natiella, J.M Carter. Surface properties determine bioadhesive outcomes: methods and results. J. Biomed. Mater. Res., (1984), 18 (4), 337-55.

DOI: 10.1002/jbm.820180404

Google Scholar

[32] P. van der Valk, A.W van Pelt, H.J Busscher, H.P De Jong, C.R Wildeyuur, J. Arends. Interaction of fibroblasts and polymer surfaces: relationship between surface free energy and fibroblasts spreading. J. Biomed. Mater. Res., (1983), 17: (5), 807-17.

DOI: 10.1002/jbm.820170508

Google Scholar

[33] Y. Xin, C. Liu, X. Zhang, G. Tang, X. Tian, P. Chu. Corrosion behavior of biomedical AZ91 magnesium alloy in simulated body fluids. J. Mater. Res., (2007), 22 (7), 2004-11.

DOI: 10.1557/jmr.2007.0233

Google Scholar

[34] M.F Morks. Magnesium phosphate treatment of steel. Materials Letters, (2004), 58 (26), 3316-19.

DOI: 10.1016/j.matlet.2004.06.027

Google Scholar