Bone Scaffold Biomimetics Based on Gelatin Hydrogel Mineralization

Article Preview

Abstract:

Apatite phase Calcium and Magnesium Phosphate doped nanocomposite scaffold has been synthesized in physiological environment by gelatin hydrogel double diffusion technique. Several analytical methods, such as X-ray diffraction (XRD), infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM) were applied to characterize physicochemical properties of the studied samples.The results showed that nanocomposite scaffolds were porous with three-dimensionally interconnected microstructure, pore size ranging from 200 to 300 μm nanocrystalline precipitated minerals were dispersed evenly among gelatin fibers. A mineral containing amorphous calcium phosphate and brushite precipitate was formed within the gelatin matrix at 4°C. After incubation in SBF solution at 37°C for 7 days, the mineral phase was changed to nanocrystalline hydroxyapatite. It should be well-known that precursor phases inside a scaffold implanted into the bone are equal to biomimetic adaptation of precursors to hydroxyapatite that is very similar to the bone and has an attentive level of biocompatibility. Therefore, the result confirms the significance of biomimetic calcium and magnesium phosphate bone tissue scaffolds in developing new biomaterials for bone regeneration.

You might also be interested in these eBooks

Info:

Pages:

59-69

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Schwarz, M. Epple. Biomimetic Crystallization of Apatite in a Porous Polymer Matrix. Chemistry - A European Journal, (1998), 4 (10), 1898-1903.

DOI: 10.1002/(sici)1521-3765(19981002)4:10<1898::aid-chem1898>3.0.co;2-u

Google Scholar

[2] F. Hosseinnejad, A.A Imani Fooladi, F. Hafezi, S. Mohit Mafi, A. Amiri, M.R Nourani. Modelling and Tissue Engineering of Three Layers of Calvarial Bone as a Biomimetic Scaffold. J. Biomim., Biomat. Tiss. Eng., (2012), 15, 37-53.

DOI: 10.4028/www.scientific.net/jbbte.15.37

Google Scholar

[3] J.M Marentette, J. Norwig, E. Stöckelmann, W.H Meyer. Crystallization of CaCO3 in the presence of PEO-block-PMAA copolymers. Adv. Mater., (1997), 9 (8), 647-651.

DOI: 10.1002/adma.19970090813

Google Scholar

[4] S. Teng, J. Shi, L. Chen. Formation of calcium phosphates in gelatin with a novel diffusion system. Colloids and Surfaces B: Biointerfaces, (2006), 49 (1), 87-92.

DOI: 10.1016/j.colsurfb.2006.03.005

Google Scholar

[5] W. Zhang, S.S Liao, F.Z Cui. Hierarchical Self-Assembly of Nano-Fibrils in Mineralized Collagen. Chem. Mater. (2003), 15 (16), 3221-3226.

DOI: 10.1021/cm030080g

Google Scholar

[6] A.L Boskey, M. Maresca, S. Doty, B. Sabsay, A. Veis. Concentration-dependent effects of dentin phosphophoryn in the regulation of in vitro hydroxyapatite formation and growth. Bone Miner., (1990), 11 (1), 55-65.

DOI: 10.1016/0169-6009(90)90015-8

Google Scholar

[7] S.V Dorozhkin. Calcium Orthophosphates in Nature, Biology and Medicine. Materials, (2009), 2 (2), 399-498.

DOI: 10.3390/ma2020399

Google Scholar

[8] S.V Dorozhkin. Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater. (2010), 6 (3), 715-734.

DOI: 10.1016/j.actbio.2009.10.031

Google Scholar

[9] R.Z LeGeros, in Hydroxyapatite and related materials, P.W. Brown, B. Constanz (Eds.): CRC Press, Boca Raton, (1994), 3-28.

Google Scholar

[10] R.Z LeGeros. Calcium phospahtes in oral biology and medicine, in Monographs in Oral Science, Vol 15, (ed. H.M Myers), Karger, Basel, Switzerland (1991), p.122.

Google Scholar

[11] F. Barrère, C.A van Blitterswijk, K. de Groot. Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int. J. Nanomedicine, (2006), 1 (3), 317-332.

Google Scholar

[12] N. Monmaturapoj. Nano-size Hydroxyapatite Powders Preparation by Wet-Chemical Precipitation Route. Met. Mater. Miner., (2008), 18 (1), 15-20.

Google Scholar

[13] R.Z LeGeros, J.P LeGeros. Dense Hyroxyapatite, in An Introduction to Bioceramics, L.L Hench, J. Wilson (Eds). World Scientific, Singapore, (1993), Vol. 1, pp.41-62.

Google Scholar

[14] F. Ren, Y. Leng , R. Xin, X. Ge. Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomaterialia, (2010), 6 (7), 2787-2796.

DOI: 10.1016/j.actbio.2009.12.044

Google Scholar

[15] J.L Drury, D.J Mooney. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, (2003), 24 (24), 4337-4351.

DOI: 10.1016/s0142-9612(03)00340-5

Google Scholar

[16] C.Wang, Y. Gong, Y. Zhong, Y. Yao, K. Su, D.A Wang. The control of anchorage-dependent cell behaviour within a hydrogel/microcarrier system in an osteogenic model. Biomaterials, (2009), 30 (12), 2259-2269.

DOI: 10.1016/j.biomaterials.2008.12.072

Google Scholar

[17] F. Hafezi, F. Hosseinnejad, A.A Fooladi, S.M Mafi, A. Amiri, M.R Nourani. Transplantation of nano-bioglass/gelatin scaffold in a non-autogenous setting for bone regeneration in a rabbit ulna. J. Mater. Sci. Mater. Med., (2012), 23 (11), 2783-2792.

DOI: 10.1007/s10856-012-4722-3

Google Scholar

[18] A. Becker, A. Ziegler, M. Epple. The mineral phase in the cuticles of two species of Crustacea consists of magnesium calcite, amorphous calcium carbonate, and amorphous calcium phosphate. Dalton Transactions (2005), 21 (10), 1814-1820.

DOI: 10.1039/b412062k

Google Scholar

[19] P.J Tannenbaum, H. Schraer, A.S Posner. Crystalline changes in avian bone related to the reproductive cycle. Calcif. Tissue Research, (1974), 14 (1), 83-86.

DOI: 10.1007/bf02060285

Google Scholar

[20] S.B Idris, S. Dánmark, A. Finne-Wistrand, K. Arvidson, A-C. Albertsson, A.I Bolstad, K. Mustafa. Biocompatibility of Polyester Scaffolds with Fibroblasts and Osteoblast-like Cells for Bone Tissue Engineering. Bioactive and Compatible Polymers, (2010), 25 (6), 567-583.

DOI: 10.1177/0883911510381368

Google Scholar

[21] M. Peter, N. Ganesh, N. Selvamurugan, S.V Nair, T. Furuike, H. Tamura, R. Jayakumar. Preparation and characterization of chitosan-gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications. Carbohydrate Polymers, (2010), 80 (3), 687-694.

DOI: 10.1016/j.carbpol.2009.11.050

Google Scholar

[22] M. Azami, S. Tavakol, A. Samadikuchaksaraei, M.S Hashjin, N. Baheiraei, M. Kamali, M.R Nourani. A Porous Hydroxyapatite/Gelatin Nanocomposite Scaffold for Bone Tissue Repair: In Vitro and In Vivo Evaluation. J. Biomater. Sci. Polym. Ed., (2012) Jan 12. [Epub ahead of print].

DOI: 10.1163/156856211x617713

Google Scholar

[23] M. Mozafari, M. Rabiee, M. Azami, S. Maleknia. Biomimetic formation of apatite on the surface of porous gelatin/bioactive glass nanocomposite scaffolds. Applied Surface Science, (2010), 257 (5), 1740-1749.

DOI: 10.1016/j.apsusc.2010.09.008

Google Scholar

[24] L. Silverman, A.L Boskey. Diffusion Systems for Evaluation of Biomineralization. Calcif. Tissue Int., (2004), 75 (6), 494-501.

DOI: 10.1007/s00223-004-0019-y

Google Scholar

[25] T. Kokubo, S. Yamaguchi. Bioactive layer formation on Metals and Polymers. In: Comprehensive Biomaterials. P. Ducheyne, K.E Healy, D.W Hutmacher, D.W Grainger, C.J Kirkpatrick (eds.), Elsevier, (2011), Vol. 1, 231-244.

DOI: 10.1016/b978-0-08-055294-1.00025-8

Google Scholar

[26] H-S Ryu, K.S Hong, J-K Lee, D.J Kim, J.H Lee, B-S Chang, D-H Lee, C-K Lee, S-S Chung. Magnesia-doped HA/β-TCP ceramics and evaluation of their biocompatibility. Biomaterials, (2004), 25 (3), 393-401.

DOI: 10.1016/s0142-9612(03)00538-6

Google Scholar

[27] M. Azami, M.J Moosavifar, N. Baheiraei, F. Moztarzadeh, J. Ai. Preparation of a biomimetic nanocomposite scaffold for bone tissue engineering via mineralization of gelatin hydrogel and study of mineral transformation in simulated body fluid. J. Biomed. Mater. Res. A., (2012), 100A (5), 1347-1355.

DOI: 10.1002/jbm.a.34074

Google Scholar

[28] J.R Dorvee, A.L Boskey, L.A Estroff. Rediscovering Hydrogel-Based Double-Diffusion Systems for Studying Biomineralization. Cryst. Eng. Comm., (2012 ), 14 (18), 5681-5700.

DOI: 10.1039/c2ce25289a

Google Scholar

[29] B.A Gotliv, L. Addadi, S. Weiner. Mollusk shell acidic proteins: in search of individual functions. Chembiochem., (2003), 4 (6), 522-529.

DOI: 10.1002/cbic.200200548

Google Scholar

[30] Z. Pucar, B. Pokric, A. Graovac. Precipitation in gels under conditions of double diffusion. Critical concentrations of the precipitating components. Anal. Chem., (1974), 46 (3), 403-409.

DOI: 10.1021/ac60339a011

Google Scholar

[31] J-B Park. The use of hydrogels in bone-tissue engineering. Med Oral Patol Oral Cir Bucal., (2011), 16 (1), e115-118.

DOI: 10.4317/medoral.16.e115

Google Scholar

[32] B.K Mann. Biologic gels in tissue engineering. Clin. Plast. Surg., (2003), 30 (4), 601-609.

Google Scholar