[1]
J.A Delgado, L. Morejón, S. Martínez, M.P Ginebra, N. Carlsson, E. Fernández, J.A Planell, M.T Clavaguera-Mora, J. Rodríguez-Viejo, Zirconia-toughened hydroxyapatite ceramic obtained by wet sintering, J. Mater. Sci. Mater. Med., 10 (12), 715-19, (1999).
DOI: 10.4028/www.scientific.net/kem.192-195.151
Google Scholar
[2]
A.M Knepper, B.K Milthorpe, S. Morica, Interdiffusion in short-fibre reinforced hydroxyapatite ceramics, J. Mater. Sci. Mater. Med., 9 (10), 589-96, (1998).
Google Scholar
[3]
A.A White, I.A Kinloch, A.H Windle, S.M Best, Optimization of the sintering atmosphere for high-density hydroxyapatite-carbon nanotube composites, J. R. Soc. Interface, 7 (Supp 5), S529-S539, (2010).
DOI: 10.1098/rsif.2010.0117.focus
Google Scholar
[4]
F.N Oktar, S. Agathopoulos, L.S Ozyegin, O. Gunduz, N. Demikol, Y. Bozkurt, S. Salman, Mechanical properties of bovine hydroxyapatite (BHA) composites doped with SiO2, MgO, Al2O3, and ZrO2, J. Mater. Sci. Mater. Med., 18 (11), 2137-43, (2007).
DOI: 10.1007/s10856-007-3200-9
Google Scholar
[5]
Y. Nayak, R.P Rana, S.K Pratihar, S. Bhattacharyya, Pressureless sintering of dense hydroxyapatite-zirconia composites, J. Mater. Sci. Mater. Med., 19 (6), 2437-44, (2008).
DOI: 10.1007/s10856-008-3371-z
Google Scholar
[6]
D.J Curran, T.J Fleming, G. Kawachi, M.R Towler, Characterisation and mechanical testing of hydrothermally treated HA/ZrO2 composites, J. Mater. Sci. Mater. Med., 20 (11), 2235-41, (2009).
DOI: 10.1007/s10856-009-3801-6
Google Scholar
[7]
S. Hesaraki, T. Ebadzadeh, S. Ahmadzadeh-Asl, Nanosilicon carbide/hydroxyapatite nanocomposites: structural, mechanical and in vitro cellular properties, J. Mater. Sci. Mater. Med., 21 (7), 2141-49, (2010).
DOI: 10.1007/s10856-010-4068-7
Google Scholar
[8]
O. Gunduz, E.M Erkan, S. Daglilar, S. Salman, S. Agathopoulos, F.N Oktar, Composites of bovine hydroxyapatite (BHA) and ZnO, J. Mater. Sci., 43 (8), 2536-40, (2008).
DOI: 10.1007/s10853-008-2497-1
Google Scholar
[9]
R. Ramachandra Rao, T.S Kannan, Synthesis and sintering of hydroxyapatite-zirconia composites, Mater. Sci. Eng. C, 20 (1-2), 187-193, (2002).
DOI: 10.1016/s0928-4931(02)00031-0
Google Scholar
[10]
S.L Shi, W. Pan, Machinable Ti3SiC2 /Hydroxyapatite Bioceramic Composites by Spark Plasma Sintering, J. Am. Ceram. Soc., 90 (10), 3331-33, (2007).
DOI: 10.1111/j.1551-2916.2007.01882.x
Google Scholar
[11]
W.R Weinand, F.F.R Goncalves, W.M Lima, Effect of Sintering Temperature in Physical-Mechanical Behaviour and in Titanium-Hydroxyapatite Composite Sinterability, Mater. Sci. Forum, 530-531, 249-54, (2006).
DOI: 10.4028/www.scientific.net/msf.530-531.249
Google Scholar
[12]
J. Weng, X. Liu, X. Zhang, X. Ji, Thermal Decomposition of Hydroxyapatite Structure Induced by Titanium and its Dioxide, J. Mater. Sci. Lett., 13, 159-61, (1994).
DOI: 10.1007/bf00278148
Google Scholar
[13]
K. Uematsu, M. Takagi, T. Honda, N. Uchida, K. Saito, Transparent Hydroxyapatite Prepared by Hot Isostatic Pressing of Filter Cake, J. Am. Ceram. Soc., 72 (8), 1476-78, (1989).
DOI: 10.1111/j.1151-2916.1989.tb07680.x
Google Scholar
[14]
M. Akao, H. Aoki, K. Kato, Mechanical Properties of Sintered Hydroxyapatite for Prosthetic Applications, J. Mater. Sci., 16, 809-12, (1981).
DOI: 10.1007/bf02402799
Google Scholar
[15]
K. Ioku, S. Somiya, M. Yoshimura, Dense/Porous Layered Apatite Ceramics Prepared by HIP Post-Sintering, J. Mater. Sci. Lett., 8, 1203-04, (1989)
DOI: 10.1007/bf01730070
Google Scholar
[16]
K. Hirota, T. Hasegawa, H. Monma, Densification of Hydroxyapatite by Hot Isostatic Pressing, J. Ceram. Soc. Japan. Int. Ed., 90 (11), 680-82, (1982).
DOI: 10.2109/jcersj1950.90.1047_680
Google Scholar
[17]
J. Li, L. Hermansson, Mechanical Evaluation of Hot Isostatically Pressed Hydroxyapatite, Interceram., 39 (2), 13-15, (1990).
Google Scholar
[18]
S. Best, W. Bonfield, C. Doyle, Optimisation of Toughness in Dense Hydroxyapatite Ceramics, pp.57-64 in Bioceramics, Volume 2 (Proceedings of 2nd International Symposium on Ceramics in Medicine). Edited by G. Heimke, German Ceramic Society, Cologne, (1990).
Google Scholar
[19]
H.T Laker, Hot Isostatic Pressing - Characteristics and Prospects in Industrial Use, pp.329-37 in High Pressure Science and AIRPT Conference. Edited by B. Vodar, P. Marteau, Pergamon, Oxford, (1980).
Google Scholar
[20]
K. Yabuta, H. Nishio, A. Kitamura K. Uematsu, Sialon ceramics by the hot isostatic press encapsulation method, J. Mater. Sci. Lett., 10 (19), 1144-45, (2011).
DOI: 10.1007/bf00744108
Google Scholar
[21]
S. Tanaka, K. Itatani, H. Uchida, M. Aizawa, I. Okada, I.J Davies, H. Suemasu, A. Nozue, The effect of rare-earth oxide addition on the hot-pressing of magnesium silicon nitride, J. Eur. Ceram. Soc., 22 (5), 777-83, (2002).
DOI: 10.1016/s0955-2219(01)00380-6
Google Scholar
[22]
S.M Naga, M. Awaad, H.F El-Maghraby, W.H Eisa, M. Abou el Ezz, F. Sommer, R. Gadow, Fabrication, Microstructure and Properties of Hot-Pressed Nd:YAG Ceramics, J. Am. Ceram. Soc., 3 (3), 35-40, (2012).
DOI: 10.1016/j.ceramint.2012.02.070
Google Scholar
[23]
F. Meschke, N. Claussen, G. De Portu, J. Rödel, Preparation of high-strength (Mg,Y)-partially stabilised zirconia by hot isostatic pressing, J. Eur. Ceram. Soc., 17, 843-850, (1997).
DOI: 10.1016/s0955-2219(96)00136-7
Google Scholar
[24]
A. Muñoz, J. Martínez, M.A Monge, B. Savoini, R. Pareja, A. Radulescu, SANS evidence for the dispersion of nanoparticles in W-1Y2O3 and W-1La2O3 processed by hot isostatic pressing, Int. J. Refractory Metals and Hard Materials, 33, 6-9, (2012).
DOI: 10.1016/j.ijrmhm.2012.01.010
Google Scholar
[25]
Y. Muraoka, M. Yoshinaka, K. Hirota, and O. Yamaguchi, Hot isostatic pressing of TiB2-ZrO2 (2 mol% Y2O3) composite powders, Mater Res. Bull., 31 (7), 787-792, (1996).
DOI: 10.1016/0025-5408(96)00069-4
Google Scholar
[26]
Z.H Ching, D. Zhang, I.W.M Brown, Pressureless sintering and hot isostatic pressing of Ti3Al-Al2O3 interpenetrating composites, Int. J. Mod. Phys. B, 20, 35-40, (2006).
Google Scholar
[27]
M. Yoshinaka, K. Hirota, M. Ito, H. Takano, O. Yamaguchi, Hot Isostatic Pressing of Reactive SnO2 Powder, J. Am. Ceram. Soc., 82 (1), 216-218, (1999).
DOI: 10.1111/j.1151-2916.1999.tb01746.x
Google Scholar
[28]
K. Hirota, Y. Takano, M. Yoshinaka, O. Yamaguchi, Hot Isostatic Pressing of Chromium Nitrides (Cr2N and CrN) Prepared by Self-Propagating High-Temperature Synthesis, J. Am. Ceram. Soc., 84 (9), 2120-22, (2001).
DOI: 10.1111/j.1151-2916.2001.tb00969.x
Google Scholar
[29]
S. Ishihara, H. Gu, B. Joachim, F. Aldinger, F. Waka, Densification of Precursor-Derived Si-C-N Ceramics by High-Pressure Hot Isostatic Pressing, J. Am. Ceram. Soc., 85 (7), 1710-12, (2002).
DOI: 10.1111/j.1151-2916.2002.tb00339.x
Google Scholar
[30]
V. Martínez, J. Echeberria, Hot Isostatic Pressing of Cubic Boron Nitride-Tungsten Carbide/Cobalt (cBN–WC/Co) Composites: Effect of cBN Particle Size and Some Processing Parameters on their Microstructure and Properties, J. Am. Ceram. Soc., 90 (2), 415-24, (2007).
DOI: 10.1111/j.1551-2916.2006.01426.x
Google Scholar
[31]
E. Schüller, O.A Hamed, M. Bram, D. Sebold, H.P Buchkremer, D. Stöve, Hot Isostatic Pressing (HIP) of Elemental Powder Mixtures and Prealloyed Powder for NiTi Shape Memory Parts, Adv. Eng. Mater., 6 (12), 918-24, (2003).
DOI: 10.1002/adem.200300366
Google Scholar
[32]
H.T Larker, Hot Isostatic Pressing, pp.194-201 in Engineering Materials Handbook. 4 Ceramics and Glasses. ASM International, Metals Park, Ohio, (1991).
Google Scholar
[33]
G.R Irwin, P.C Paris, Fundamental Aspects of Crack Growth and Fracture, pp.2-13 in Fracture III, Edited by H. Liebowitz. Academic Press, New York, (1971).
Google Scholar
[34]
N. Ehsani, A.J Ruys, C.C Sorrell. Thixotropic Casting of Fecralloyâ - Fiber Reinforced Hydroxyapatite, Key Eng. Mater., 104 (1), 373-80, (1995).
DOI: 10.4028/www.scientific.net/kem.104-107.373
Google Scholar
[35]
A.J Ruys, K.A Zeigler, O.C Standard, A. Brandwood, B.K Milthorpe, C.C Sorrell, Hydroxyapatite Sintering Phenomena: Densification and Dehydration Behaviour, pp.605-10 in Ceramics: Adding the Value, Volume 2. Edited by M.J Bannister. CSIRO Publications, Melbourne, (1992).
Google Scholar
[36]
A.J Ruys, K.A Zeigler, B.K Milthorpe, C.C Sorrell, Hydroxylapatite-Ceramic/Metal Composites: Quantification of Additive-Induced Dehydration, pp.591-97 in Ceramics: Adding the Value, Volume 1. Edited by M.J Bannister. CSIRO Publications, Melbourne, (1992).
Google Scholar
[37]
R.A Peterson, Microwave Heating Temperature Control, U.S Patent No. 3,859,493 (7 January 1975).
Google Scholar
[38]
K. Hirota, T. Ichikizaki, Y. Hasegawa, H. Suzuki, Densification of Si3N4 by Hot Isostatic Press in N2 Atmosphere, pp.434-441 in Proceedings of the 1st International Symposium on Ceramic Components for Engines. Edited by S. Somiya, E. Kanai, K.I Ando. KTK Scientific Publishers, (1988).
Google Scholar
[39]
J.C Behiri, W. Bonfield, Crack Velocity Dependence of Longitudinal Fracture in Bone, J. Mater. Sci., 15 (7), 1841-49, (1980).
DOI: 10.1007/bf00550605
Google Scholar
[40]
W. Bonfield, M.D Grynpas, R.J Young, Crack Velocity and the Fracture of Bone, J. Biomechanics, 11 (10-12), 473-79, (1978).
DOI: 10.1016/0021-9290(78)90058-1
Google Scholar
[41]
R. Ravaglioli, A. Krajewski, Bioceramic: Materials, Properties, Applications, Chapman and Hall, London, (1992).
Google Scholar
[42]
G. De With, A.J Corbijn, Metal Fiber Reinforced Hydroxy-apatite Ceramics, J. Mater. Sci., 24 (9), 3411-15, (1989).
DOI: 10.1007/bf01139073
Google Scholar
[43]
R.W Rice, Ceramic Matrix Composite Toughening Mechanisms: An Update, Ceram. Eng. Sci. Proc., 6 (7-8), 589-607, (1985).
Google Scholar
[44]
R.W Rice, Mechanisms of Toughening in Ceramic Matrix Composites", Ceram. Eng. Sci. Proc., 2 (5-6), 661-81, (1981).
Google Scholar
[45]
J-M Wu, T-S Yen, Sintering of Hydroxylapatite-Zirconia Composite Materials, J. Mater. Sci., 23, 3771-77 (1988).
Google Scholar
[46]
A.J Ruys, M. Wei, B.K Milthorpe, A. Brandwood, C.C Sorrell, Optimisation of Fibre Content in ZrO2-Fibre-Reinforced Hydroxyapatite, J. Aust. Ceram. Soc., 29 (1/2), 57-64, (1993).
Google Scholar
[47]
A.J Ruys, M. Wei, A. Brandwood, B.K Milthorpe, C.C Sorrell, The Effects of Excessive Sintering on the Properties of Hydroxyapatite, pp.586-90 in Ceramics: Adding the Value, Volume 1. Edited by M.J Bannister. CSIRO Publications, Melbourne, (1992).
Google Scholar
[48]
A.J Ruys, A. Brandwood, B.K Milthorpe, M.R Dickson, K.A Zeigler, C.C Sorrell, The Effects of Sintering Atmosphere on the Chemical Compatibility of Hydroxyapatite and Particulate Additives at 1200°C, J. Mater. Sci. Mater. Med., 6 (5), 297-301, (1995).
DOI: 10.1007/bf00120274
Google Scholar
[49]
A.J Ruys, M. Wei, B.K Milthorpe, A. Brandwood, C.C Sorrell, Hydrothermal Sintering of ZrO2 and Al2O3 Fibre-Reinforced Hydroxyapatite, J. Aust. Ceram. Soc., 29 (1/2), 51-56 (1993).
Google Scholar
[50]
L.R Dharani, Analysis of a Ceramic Matrix Composite Flexural Specimen, pp.87-97 in Thermal and Mechanical Behaviour of Metal Matrix and Ceramic Matrix Composites., Edited by J.M Kennedy, H.H Moeller, W.S Johnson, ASTM Special Technical Publication, Philadelphia, PA, USA, (1990).
DOI: 10.1520/stp25393s
Google Scholar
[51]
R. Pampuch, Constitution and Properties of Ceramic Materials; Material Science Monographs, Volume 58, Elsevier, Amsterdam, Netherlands, (1991).
Google Scholar
[52]
D.W Richerson, Modern Ceramic Engineering, Second Edition. Marcel Dekker, New York, USA, (1992).
Google Scholar
[53]
K. Xia, T.G Langdon, Review: The Toughening and Strengthening of Ceramic Materials Through Discontinuous Reinforcement, J. Mater. Sci., 29 (20), 5219-31, (1994).
DOI: 10.1007/bf01171532
Google Scholar
[54]
B.F Yeter-Dal, V. Gross, T.W Turney, Comparison of the Properties of Hydroxyapatite Ceramics Fabricated from Different Sources of Powder, pp.617-20 in Ceramics: Adding the Value, Volume 1. Edited by M.J Bannister. CSIRO Publications, Melbourne, (1992).
Google Scholar
[55]
G. De With, H.J.A Van Dijk, N. Hattu, K. Prijs, Preparation, Microstructure and Mechanical Properties of Dense Polycrystalline Hydroxyapatite, J. Mater. Sci., 16 (6), 1592-98, (1981).
DOI: 10.1007/bf02396876
Google Scholar
[56]
P.F Becher, Advances in the Design of Toughened Ceramics, J. Ceram. Soc. Japan Int. Ed., 99 (1154), 993-1001, (1991).
DOI: 10.2109/jcersj.99.993
Google Scholar
[57]
ASM Metals Handbook, Volume 2 - Properties and Selection Non Ferrous Alloys and Special Purpose Materials, 10th Edition, Metals Park Ohio, USA, (1991).
Google Scholar