The Preparation of Silk Fibroin Modified PBT-co-PBS/PEG Composite Films and their Effects on Clinical Human Salivary Epithelial Cells Transplantation

Article Preview

Abstract:

We reported the preparation of surface modified poly(butylene terephthalate)-co-poly(butylene succinate)-b-poly(ethylene glycol) (i.e. PBT-co-PBS/PEG) films by three methods: silk fibroin coating, SO2 plasma treatment and silk fibroin anchoring. The obtained composite films were named SF/(PBT-co-PBS/PEG), SO2/(PBT-co-PBS/PEG) and SF/SO2/(PBT-co-PBS/PEG), respectively. Their surface properties were characterized by contact angles, surface energies and XPS. The biocompatibility of the films were further evaluated by the morphology, attachment, proliferation and viability of human salivary epithelial cells (HSG cells). Results revealed that SF/SO2/(PBT-co-PBS/PEG) possessed the high surface free energy (59.67 mJ/m2) and could immobilize a great amount of fibroin (SF surface coverage: 26.39 wt%), which attributed to the formation of such polar groups as hydrosulfide group, sulfonic group, carboxyl and carbonyl ones in the process of SO2 plasma treatment. The cell tests suggested that the silk fibroin anchoring could significantly enhance the biocompatibility of PBT-co-PBS/PEG, which implied the potential application of fibroin modified PBT-co-PBS/PEG for clinical HSG cells transplantation in artificial salivary gland constructs.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] T. Sugihara and Y. Yoshimura: Inter. J. Oral Maxillofac. Surg. Vol. 17 (1988), p.71

Google Scholar

[2] L. Sabrina, S. Margherita and L. Domenico: Lab Investig. Vol. 92 (2012), p.615

Google Scholar

[3] J. Meredith, Y. Eugene and K. John: Expert Rev. Anticancer Ther. Vol. 12 (2012), p.359

Google Scholar

[4] S.L. Wang, E. Cukierman, W.D. Swaim, K.M. Yamada and B.J. Baum: Biomaterials Vol. 20 (1999), p.1043

Google Scholar

[5] J.P. Chen and C.H. Su: Acta. Biomater. Vol. 7 (2011), p.234

Google Scholar

[6] R. Jean-Gilles, D. Soscia, S.J. Sequeira, M. Melfi and A. Gadre: J. Nanotechnol. Eng. Med. Vol. 1 (2010), p.31008

Google Scholar

[7] S. Sequeira, D. Soscia, B. Oztan, A. Mosier and R. Jean-Gilles: Biomaterials Vol. 23 (2012), p.3175

Google Scholar

[8] U. Witt, R.J. Müller and W.D. Deckwer: Macromol. Chem. Phys. Vol. 197 (1996), p.1525

Google Scholar

[9] R.J. Müller, I. Kleeberg and W.D. Deckwer: J. Biotech. Vol. 86 (2001), p.87

Google Scholar

[10] A.E. Ghalbzouri, E.N. Lamme, C. Van Blitterswijk, J. Koopmanc and M. Ponec: Biomaterials Vol. 25 (2004), p.2987

DOI: 10.1016/j.biomaterials.2003.09.098

Google Scholar

[11] J. Malda, T.B.F. Woodfield, F. Van de Vloodt, C.D.E. Wilson Martens and J. Tramper: Biomaterials Vol. 26 (2005), p.63

DOI: 10.1016/j.biomaterials.2004.02.046

Google Scholar

[12] S. L. Luo, F. X. Li and J. Y. Yu: J. Polym. Res. Vol. 18 (2011), p.393

Google Scholar

[13] Y. Zhang, Z.G. Feng, F.X. Liu and A.Y. Zhang: Acta. Chimica. Sinica. Vol. 60 (2002), p.2225

Google Scholar

[14] A.O. Lobo, F.R. Marciano, S.C. Ramos, M.M. Machado and E.J. Corat: Mater. Sci. Eng. C Vol. 31 (2011), p.1505

Google Scholar

[15] L. Moroni, R. Licht, J. Boer, J.R. Wijn and C.A. Van Blitterswijk: Biomaterials Vol. 27 (2006), p.4911

Google Scholar

[16] Y. L. Cui, A. D. Qi, W. G. Liu, X. H. Wang, H. Wang, D. M. Ma and K. D. Yao: Biomaterials Vol. 24 (2003), p.3859

Google Scholar

[17] Z. Ma, C. Gao, Y. Gong and J. Shen: Biomaterials Vol. 26 (2005), p.1253

Google Scholar

[18] R.F. She, J. Deng, W.L. Huang, Z.J. Dong and B. Liu: Chin. J. Tissue Eng. Res. Vol. 16 (2012), p.455

Google Scholar

[19] Q. Wang and L. Qi: New Chem. Mater. Vol. 40 (2012), p.76

Google Scholar

[20] D.G. Harkin, K.A. George, P.W. Madden, I.R. Schwab and D.W. Hutmacher: Biomaterials Vol. 32 (2011), p.2445

Google Scholar

[21] A.S. Gobin, V.E. Froude and A.B. Mathur: J. Biomed. Mater. Res. Vol. 74 (2005), p.465

Google Scholar

[22] C.C. Hou, S.J. Tao, Y. Zhu and S. Xu: J. Text. Res. Vol. 33 (2012), p.27

Google Scholar

[23] P. Madden, J.N.X. Lai, K. George, T. Giovenco and D. Harkin: Biomaterials Vol. 32 (2011), p.4076

Google Scholar

[24] K.Y. Cai, K.D. Yao, Y.L. Cui, Z.M. Yang and X.Q. Li : Biomaterials Vol. 23 (2002), p.1603

Google Scholar

[25] X.F. Wang, B. Ding, J.Y. Yu and M.R. Wang: Nano today Vol. 6 (2011), p.510

Google Scholar

[26] Z. Ding, J.N. Chen, S.Y. Gao, J.B. Chang and J.F. Zhang: Biomaterials Vol. 25 (2004), p.1059

Google Scholar

[27] A.E. Ghalbzouri, E.N. Lamme, C. Van Blitterswijk, J. Koopmanc and M. Ponec: Biomaterials Vol. 25 (2004), p.2987

DOI: 10.1016/j.biomaterials.2003.09.098

Google Scholar

[28] J. Malda, T.B.F. Woodfield, F. Van de Vloodt, C.D.E. Wilson Martens and J. Tramper: Biomaterials Vol. 26 (2005), p.63

DOI: 10.1016/j.biomaterials.2004.02.046

Google Scholar

[29] D.K. Owens and R.C. Wendt: J. Appl. Polymer Sci. Vol. 13 (1969), p.1741

Google Scholar

[30] Z.F. Su and B.Q. Zuo: Silk Vol. 48 (2011), p.13

Google Scholar

[31] K. Inuvye, M. Kurokawa, S. Nishikawa and M. Tsukada: J. Biochem. Biophys. Methods Vol. 37 (1998), p.159

Google Scholar