[1]
P.G. Coelho, J.M. Granjeiro, G.E. Romanos, M. Suzuki, N.R.F.A Silva, G. Cardaropoli, V.P. Thompson, J.E. Lemons, Basic research methods and current trends of dental implant surfaces, J. Biomed. Mater. Res. B Appl. Biomater. 88 (2009) 579-596.
DOI: 10.1002/jbm.b.31264
Google Scholar
[2]
G.M. Raghoebar, A. Vissink, H. Reintsema, R.H.K. Batenburg, Bone grafting of the floor of the maxillary sinus for the placement of endosseous implants, Br. J. Oral Maxillofac. Surg. 35 (1997) 119-125.
DOI: 10.1016/s0266-4356(97)90687-2
Google Scholar
[3]
A. Scarano, M. Degidi, G. Iezzi, G. Pecora, M. Piattelli, G. Orsini, S. Caputi, V. Perrotti, C. Mangano, A. Piattelli, Maxillary sinus augmentation with different biomaterials: a comparative histologic and histomorphometric study in man, Implant Dent. 15 (2006) 197-207.
DOI: 10.1097/01.id.0000220120.54308.f3
Google Scholar
[4]
I.I. Castro-Silva, W.F. Zambuzzi, J.M. Granjeiro, Current overview of the use of xenograft in dentistry, Innov. Implant J. Biomater. Esthetic 4 (2009) 70-75.
Google Scholar
[5]
A.O. Paulo, I.I. Castro-Silva, D.F. Oliveira, M.E.L. Machado, I. Bonetti-Filho, J.M. Granjeiro, Repair of critical-size defects with autogenous periosteum-derived cells combined with bovine anorganic apatite/collagen: an experimental study in rat calvaria, Braz. Dent. J. 22 (2011) 322-328.
DOI: 10.1590/s0103-64402011000400011
Google Scholar
[6]
L.A.A. Zorzano, M.J.R. Tojo, J.M.A. Urizar, Maxillary sinus lift with intraoral autologous bone and B – Tricalcium Phosphate: Histological and histomorphometric clinical study, Med. Oral Patol. Oral Cir. Bucal 12 (2007) E532-536.
Google Scholar
[7]
G. Chaushu, O. Mardinger, S. Calderon, O. Moses, J. Nissan, The use of cancellous block allograft for sinus floor augmentation with simultaneous implant placement in the posterior atrophic maxilla, J. Periodontol. 80 (2009) 422-428.
DOI: 10.1902/jop.2009.080451
Google Scholar
[8]
S.S. Noumbissi, J.L. Lozada, P.J. Boyne, M.D. Rohrer, D. Clem, J.S. Kim, H. Prasad, Clinical, histologic, and histomorphometric evaluation of mineralized solvent-dehydrated bone allograf (Puros) in human maxillary sinus grafts, J. Oral Implantol. 31 (2005) 171-179.
DOI: 10.1563/1548-1336(2005)31[171:chaheo]2.0.co;2
Google Scholar
[9]
Z. Schwartz, M. Goldstein, E. Raviv, A. Hirsch, D.M. Ranly, B.D. Boyan, Clinical evaluation of demineralized bone allograft in a hyaluronic acid carrier for sinus lift augmentation in humans: a computed tomography and histomorphometric study, Clin. Oral Impl. Res. 18 (2007) 204-211.
DOI: 10.1111/j.1600-0501.2006.01303.x
Google Scholar
[10]
C. Mangano, A. Scarano, V. Perrotti, G. Iezzi, A. Piattelli, Maxillary sinus augmentation with a porous synthetic hydroxyapatite and bovine-derived hydroxyapatite: a comparative clinical and histologic study, Int. J. Oral Maxillofac. Implants 22 (2007) 980-986.
DOI: 10.1563/796.1
Google Scholar
[11]
F. Gonçalves, A. Hohn, J.M. Granjeiro, I.I.C. Silva, R. Taga, T.M. Cestari, R.V. Zanetti, A.L. Zanetti, Bone regeneration in Dentistry with use of composed bone substitute Gen Mix, Rev. ImplantNews 6 (2009) 373-379.
Google Scholar
[12]
M. Steigmann, A.K. Garg, A comparative study of bilateral sinus lifts performed with platelet-rich plasma alone versus alloplastic graft material reconstituted with blood, Implant Dent 14 (2005) 261-266.
DOI: 10.1097/01.id.0000177412.84225.05
Google Scholar
[13]
Y.K. Kim, P.Y. Yun, S.C. Lim, S.G. Kim, H.J. Lee, J.L. Ong, Clinical evaluations of OSTEON as a new alloplastic material in sinus bone grafting and its effect on bone healing, J. Biomed. Mater. Res. B Appl. Biomater. 86 (2008), 270-277.
DOI: 10.1002/jbm.b.31015
Google Scholar
[14]
R.O. Lomelino, I.I. Castro-Silva, A.B.R. Linhares, G.G. Alves, S.R.A. Santos, V.S. Gameiro, A.M. Rossi, J.M. Granjeiro, The association of human primary bone cells with biphasic calcium phosphate (βTCP/HA 70:30) granules increases bone repair, J. Mater. Sci. Mater. Med. 23 (2012) 781-788.
DOI: 10.1007/s10856-011-4530-1
Google Scholar
[15]
C.L. Jardelino, E.R. Takamori, S.R.A. Santos, A.M. Rossi, J.M. Granjeiro, Biocompatibility of bovine anorganic xenograft, Key Eng. Mater. 396-8 (2009) 3-6.
DOI: 10.4028/www.scientific.net/kem.396-398.3
Google Scholar
[16]
C. Jardelino, E.R. Takamori, L.F. Hermida, A. Lenharo, I.I. Castro-Silva, J.M. Granjeiro, Porcine peritoneum as source of biocompatible collagen, Acta Cir. Bras. 25 (2010), 332-336.
DOI: 10.1590/s0102-86502010000400006
Google Scholar
[17]
C.M. Sicca, R.C. Oliveira, T.L. Silva, T.M. Cestari, D.T. Oliveira, M.A.R. Buzalaf, R. Taga, E.M. Taga, J.M. Granjeiro, J.R. Kina, Microscopic and biochemical analysis of the cellular response to cortical bovine grafts implanted in rat subcutaneous. Effect of particle sizes, Rev. FOB 8 (2000) 1-10.
DOI: 10.1590/s0103-64402004000100001
Google Scholar
[18]
R. Gapski, R. Neiva, T.J. Oh, H.L. Wang, Histologic analyses of human mineralized bone grafting material in sinus elevation procedures: a case series, Int. J. Periodontics Restorative Dent. 26 (2006) 59-69.
Google Scholar
[19]
B. Wenz, B. Oesch, M. Horst, Analysis of the risk of transmitting bovine spongiform encephalopathy through bone grafts derived from bovine bone, Biomaterials 22 (2001) 1599-1606.
DOI: 10.1016/s0142-9612(00)00312-4
Google Scholar
[20]
M.D. Calasans-Maia, F.O. Ascoli, A.T.N.A. Novellino, A.M. Rossi, J.M. Granjeiro, Comparative histological evaluation of tibial bone repair in rabbits treated with xenografts, Acta Ortop. Bras. 17 (2009) 340-343.
DOI: 10.1590/s1413-78522009000600005
Google Scholar
[21]
P. Galindo-Moreno, G. Ávila, J.E. Fernández-Barbero, M. Aguilar, E. Sánchez-Fernández, A. Cutando, H.L. Wang, Evaluation of sinus floor elevation using a composite bone graft mixture, Clin. Oral Impl. Res. 18 (2007) 376-382.
DOI: 10.1111/j.1600-0501.2007.01337.x
Google Scholar
[22]
L. Pikdöken, B. Gürbüzer, Z. Küçükodacı, M. Urhan, E. Barış, E. Tezulaş, Scintigraphic, histologic, and histomorphometric analyses of bovine bone mineral and autogenous bone mixture in sinus floor augmentation: a randomized controlled trial - results after 4 months of healing, J. Oral Maxillofac. Surg. 69 (2011) 160-169.
DOI: 10.1016/j.joms.2010.07.036
Google Scholar
[23]
R. Gapski, C. Misch, D. Stapleton, S. Mullins, C. Cobb, A. Vansanthan, M. Reissner, Histological, histomorphometric, and radiographic evaluation of a sinus augmentation with a new bone allograft: a clinical case report, Implant Dent. 17 (2008) 430-438.
DOI: 10.1097/id.0b013e318182d827
Google Scholar
[24]
L. Cordaro, D.D. Bosshardt, P. Palattella, W. Rao, G. Serino, M. Chiapasco, Maxillary sinus grafting with Bio-Oss or Straumann Bone Ceramic: histomorphometric results from a randomized controlled multicenter clinical trial, Clin. Oral Implants Res. 19 (2008) 796-803.
DOI: 10.1111/j.1600-0501.2008.01565.x
Google Scholar
[25]
S. Sauerbier, M. Palmowski, M. Vogeler, H. Nagursky, A. Al-Ahmad, D. Fisch, J. Hennig, R. Schmelzeisen, R. Gutwald, U. Fasol, Onset and maintenance of angiogenesis in biomaterials: in vivo assessment by dynamic contrast-enhanced MRI, Tissue Eng. Part C Methods 15 (2009) 455-462.
DOI: 10.1089/ten.tec.2008.0626
Google Scholar
[26]
D.C. Tong, K. Rioux, M. Drangsholt, O.R. Beirne, A review of survival rates for implants placed in grafted maxillary sinuses using meta-analysis, Int. J. Oral Maxillofac. Implants 13 (1998) 175-182.
Google Scholar
[27]
Z. Artzi, M. Weinreb, G. Carmeli, R. Lev-Dor, M. Dard, C.E. Nemcovsky, Histomorphometric assessment of bone formation in sinus augmentation utilizing a combination of autogenous and hydroxyapatite/biphasic tricalcium phosphate graft materials: at 6 and 9 months in humans, Clin. Oral Implants Res. 19 (2008) 686-692.
DOI: 10.1111/j.1600-0501.2008.01539.x
Google Scholar