Osteoconduction and Bioresorption of Bone Allograft versus Anorganic Bovine Bone Xenograft: A Histomorphometric Study in Humans

Article Preview

Abstract:

This clinical study evaluated the tissue repair process using different bone grafts. Nine dental patients with indication for posterior implantodontic treatment were submitted to maxillary sinus lifting procedures associated to grafting. After 6 months, bone biopsies (6 sites with allogenous bone grafting and 13 sites with bovine xenogenous bone grafting/OsseusTM) were removed and processed for histopathological and histomorphometric analyses (ANOVA and Tukey's test). Both groups had tissue biocompatibility without significant inflammatory response, only punctual presence of multinucleated giant cells in xenograft group. Osteoconductive potential was evidenced by new bone tissue surrounding and in direct contact with the granules of both grafts. Volume density of connective tissue was similar between groups, although there were significant differences in allograft group in comparison to xenograft as the presence of new bone formation (48.50%±13.93 versus 29.83±9.56, respectively, p<0.05) and remnant biomaterial (1.57±2.39 versus 22.23±12.41, respectively, p<0.001), suggesting a greater osteoconductivity and faster bioresorption in the allograft group. These results demonstrate that allogenous bone and OsseusTM can be satisfactorily used as grafts in minor oral surgeries for bone augmentation in humans.

You might also be interested in these eBooks

Info:

Pages:

85-95

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.G. Coelho, J.M. Granjeiro, G.E. Romanos, M. Suzuki, N.R.F.A Silva, G. Cardaropoli, V.P. Thompson, J.E. Lemons, Basic research methods and current trends of dental implant surfaces, J. Biomed. Mater. Res. B Appl. Biomater. 88 (2009) 579-596.

DOI: 10.1002/jbm.b.31264

Google Scholar

[2] G.M. Raghoebar, A. Vissink, H. Reintsema, R.H.K. Batenburg, Bone grafting of the floor of the maxillary sinus for the placement of endosseous implants, Br. J. Oral Maxillofac. Surg. 35 (1997) 119-125.

DOI: 10.1016/s0266-4356(97)90687-2

Google Scholar

[3] A. Scarano, M. Degidi, G. Iezzi, G. Pecora, M. Piattelli, G. Orsini, S. Caputi, V. Perrotti, C. Mangano, A. Piattelli, Maxillary sinus augmentation with different biomaterials: a comparative histologic and histomorphometric study in man, Implant Dent. 15 (2006) 197-207.

DOI: 10.1097/01.id.0000220120.54308.f3

Google Scholar

[4] I.I. Castro-Silva, W.F. Zambuzzi, J.M. Granjeiro, Current overview of the use of xenograft in dentistry, Innov. Implant J. Biomater. Esthetic 4 (2009) 70-75.

Google Scholar

[5] A.O. Paulo, I.I. Castro-Silva, D.F. Oliveira, M.E.L. Machado, I. Bonetti-Filho, J.M. Granjeiro, Repair of critical-size defects with autogenous periosteum-derived cells combined with bovine anorganic apatite/collagen: an experimental study in rat calvaria, Braz. Dent. J. 22 (2011) 322-328.

DOI: 10.1590/s0103-64402011000400011

Google Scholar

[6] L.A.A. Zorzano, M.J.R. Tojo, J.M.A. Urizar, Maxillary sinus lift with intraoral autologous bone and B – Tricalcium Phosphate: Histological and histomorphometric clinical study, Med. Oral Patol. Oral Cir. Bucal 12 (2007) E532-536.

Google Scholar

[7] G. Chaushu, O. Mardinger, S. Calderon, O. Moses, J. Nissan, The use of cancellous block allograft for sinus floor augmentation with simultaneous implant placement in the posterior atrophic maxilla, J. Periodontol. 80 (2009) 422-428.

DOI: 10.1902/jop.2009.080451

Google Scholar

[8] S.S. Noumbissi, J.L. Lozada, P.J. Boyne, M.D. Rohrer, D. Clem, J.S. Kim, H. Prasad, Clinical, histologic, and histomorphometric evaluation of mineralized solvent-dehydrated bone allograf (Puros) in human maxillary sinus grafts, J. Oral Implantol. 31 (2005) 171-179.

DOI: 10.1563/1548-1336(2005)31[171:chaheo]2.0.co;2

Google Scholar

[9] Z. Schwartz, M. Goldstein, E. Raviv, A. Hirsch, D.M. Ranly, B.D. Boyan, Clinical evaluation of demineralized bone allograft in a hyaluronic acid carrier for sinus lift augmentation in humans: a computed tomography and histomorphometric study, Clin. Oral Impl. Res. 18 (2007) 204-211.

DOI: 10.1111/j.1600-0501.2006.01303.x

Google Scholar

[10] C. Mangano, A. Scarano, V. Perrotti, G. Iezzi, A. Piattelli, Maxillary sinus augmentation with a porous synthetic hydroxyapatite and bovine-derived hydroxyapatite: a comparative clinical and histologic study, Int. J. Oral Maxillofac. Implants 22 (2007) 980-986.

DOI: 10.1563/796.1

Google Scholar

[11] F. Gonçalves, A. Hohn, J.M. Granjeiro, I.I.C. Silva, R. Taga, T.M. Cestari, R.V. Zanetti, A.L. Zanetti, Bone regeneration in Dentistry with use of composed bone substitute Gen Mix, Rev. ImplantNews 6 (2009) 373-379.

Google Scholar

[12] M. Steigmann, A.K. Garg, A comparative study of bilateral sinus lifts performed with platelet-rich plasma alone versus alloplastic graft material reconstituted with blood, Implant Dent 14 (2005) 261-266.

DOI: 10.1097/01.id.0000177412.84225.05

Google Scholar

[13] Y.K. Kim, P.Y. Yun, S.C. Lim, S.G. Kim, H.J. Lee, J.L. Ong, Clinical evaluations of OSTEON as a new alloplastic material in sinus bone grafting and its effect on bone healing, J. Biomed. Mater. Res. B Appl. Biomater. 86 (2008), 270-277.

DOI: 10.1002/jbm.b.31015

Google Scholar

[14] R.O. Lomelino, I.I. Castro-Silva, A.B.R. Linhares, G.G. Alves, S.R.A. Santos, V.S. Gameiro, A.M. Rossi, J.M. Granjeiro, The association of human primary bone cells with biphasic calcium phosphate (βTCP/HA 70:30) granules increases bone repair, J. Mater. Sci. Mater. Med. 23 (2012) 781-788.

DOI: 10.1007/s10856-011-4530-1

Google Scholar

[15] C.L. Jardelino, E.R. Takamori, S.R.A. Santos, A.M. Rossi, J.M. Granjeiro, Biocompatibility of bovine anorganic xenograft, Key Eng. Mater. 396-8 (2009) 3-6.

DOI: 10.4028/www.scientific.net/kem.396-398.3

Google Scholar

[16] C. Jardelino, E.R. Takamori, L.F. Hermida, A. Lenharo, I.I. Castro-Silva, J.M. Granjeiro, Porcine peritoneum as source of biocompatible collagen, Acta Cir. Bras. 25 (2010), 332-336.

DOI: 10.1590/s0102-86502010000400006

Google Scholar

[17] C.M. Sicca, R.C. Oliveira, T.L. Silva, T.M. Cestari, D.T. Oliveira, M.A.R. Buzalaf, R. Taga, E.M. Taga, J.M. Granjeiro, J.R. Kina, Microscopic and biochemical analysis of the cellular response to cortical bovine grafts implanted in rat subcutaneous. Effect of particle sizes, Rev. FOB 8 (2000) 1-10.

DOI: 10.1590/s0103-64402004000100001

Google Scholar

[18] R. Gapski, R. Neiva, T.J. Oh, H.L. Wang, Histologic analyses of human mineralized bone grafting material in sinus elevation procedures: a case series, Int. J. Periodontics Restorative Dent. 26 (2006) 59-69.

Google Scholar

[19] B. Wenz, B. Oesch, M. Horst, Analysis of the risk of transmitting bovine spongiform encephalopathy through bone grafts derived from bovine bone, Biomaterials 22 (2001) 1599-1606.

DOI: 10.1016/s0142-9612(00)00312-4

Google Scholar

[20] M.D. Calasans-Maia, F.O. Ascoli, A.T.N.A. Novellino, A.M. Rossi, J.M. Granjeiro, Comparative histological evaluation of tibial bone repair in rabbits treated with xenografts, Acta Ortop. Bras. 17 (2009) 340-343.

DOI: 10.1590/s1413-78522009000600005

Google Scholar

[21] P. Galindo-Moreno, G. Ávila, J.E. Fernández-Barbero, M. Aguilar, E. Sánchez-Fernández, A. Cutando, H.L. Wang, Evaluation of sinus floor elevation using a composite bone graft mixture, Clin. Oral Impl. Res. 18 (2007) 376-382.

DOI: 10.1111/j.1600-0501.2007.01337.x

Google Scholar

[22] L. Pikdöken, B. Gürbüzer, Z. Küçükodacı, M. Urhan, E. Barış, E. Tezulaş, Scintigraphic, histologic, and histomorphometric analyses of bovine bone mineral and autogenous bone mixture in sinus floor augmentation: a randomized controlled trial - results after 4 months of healing, J. Oral Maxillofac. Surg. 69 (2011) 160-169.

DOI: 10.1016/j.joms.2010.07.036

Google Scholar

[23] R. Gapski, C. Misch, D. Stapleton, S. Mullins, C. Cobb, A. Vansanthan, M. Reissner, Histological, histomorphometric, and radiographic evaluation of a sinus augmentation with a new bone allograft: a clinical case report, Implant Dent. 17 (2008) 430-438.

DOI: 10.1097/id.0b013e318182d827

Google Scholar

[24] L. Cordaro, D.D. Bosshardt, P. Palattella, W. Rao, G. Serino, M. Chiapasco, Maxillary sinus grafting with Bio-Oss or Straumann Bone Ceramic: histomorphometric results from a randomized controlled multicenter clinical trial, Clin. Oral Implants Res. 19 (2008) 796-803.

DOI: 10.1111/j.1600-0501.2008.01565.x

Google Scholar

[25] S. Sauerbier, M. Palmowski, M. Vogeler, H. Nagursky, A. Al-Ahmad, D. Fisch, J. Hennig, R. Schmelzeisen, R. Gutwald, U. Fasol, Onset and maintenance of angiogenesis in biomaterials: in vivo assessment by dynamic contrast-enhanced MRI, Tissue Eng. Part C Methods 15 (2009) 455-462.

DOI: 10.1089/ten.tec.2008.0626

Google Scholar

[26] D.C. Tong, K. Rioux, M. Drangsholt, O.R. Beirne, A review of survival rates for implants placed in grafted maxillary sinuses using meta-analysis, Int. J. Oral Maxillofac. Implants 13 (1998) 175-182.

Google Scholar

[27] Z. Artzi, M. Weinreb, G. Carmeli, R. Lev-Dor, M. Dard, C.E. Nemcovsky, Histomorphometric assessment of bone formation in sinus augmentation utilizing a combination of autogenous and hydroxyapatite/biphasic tricalcium phosphate graft materials: at 6 and 9 months in humans, Clin. Oral Implants Res. 19 (2008) 686-692.

DOI: 10.1111/j.1600-0501.2008.01539.x

Google Scholar