Mn Blended Hydroxyapatite Nanoceramic: Bioactivity, Dielectric and Luminescence Studies

Article Preview

Abstract:

Abstract: In this study, in-vitro bioactivity of manganese blended hydroxyapatite (Mn-HAp) pellets is carried out using simulated body fluid (SBF) solution. The incubated Mn-HAp samples are characterized by XRD, FTIR and SEM/EDAX. Dielectric and photoluminescence properties of Mn-HAp samples are studied as a function of incubation period in SBF. XRD profiles show that hexagonal apatite structure remains intact after partial replacement of calcium ions by manganese ions and even after incubation. The change in absorption due to phosphate group, depicted in FTIR spectra, for incubated samples confirms growth of apatite on Mn-HAp surface. SEM/ EDAX studies suggest that Mn-HAp surface promotes the growth of apatite without changing its structure due to apatite nucleation and growth on the surface of Mn-HAp. The value of dielectric constant of Mn-HAp increases after incubation. Increase in period of immersion in m-SBF leads to decrease in dielectric constant of manganese exchanged hydroxyapatite. The photoluminescence (PL) study reveals that the Mn-HAp can be used stable and efficient blue luminescent material.

You might also be interested in these eBooks

Info:

Pages:

43-59

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.P. Ferraz, F.J. Monteiro, C.M. Manue, Hydroxyapatite nanoparticles: A review of preparation methodologies, J. of Appl. Biomater. Biomech. 2 (2004) 74-80.

Google Scholar

[2] E. Rivera-Munoz, W. Brostow, R. Rodriguez, V.M. Castano, Growth of hydroxyapatite on silica gels in the presence of organic additives: kinetics and mechanism, Mater. Res. Innov. 4 (2001) 222-230.

DOI: 10.1007/s100190000100

Google Scholar

[3] R.W.N. Nilen, P.W. Richter, The thermal stability of hydroxyapatite in biphasic calcium phosphate ceramic, J. of Mater. Sci.: Mater. Medic. 19(2008)1693-702.

DOI: 10.1007/s10856-007-3252-x

Google Scholar

[4] A.E. Porter, N. Patel, J.N. Skepper, S.M. Best, W. Bonfield, Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics, Biomater. 24 (2003) 4609–4620.

DOI: 10.1016/s0142-9612(03)00355-7

Google Scholar

[5] Y. Cai, S. Zhang, X. Zeng, Y. Wang, M. Qian, W. Weng, Improvement of bioactivity with magnesium and fluorine ions incorporated hydroxyapatite coatings via sol–gel deposition on Ti6Al4V alloys, Thin Solid Films. 25915 (2009) 1-5.

DOI: 10.1016/j.tsf.2009.03.071

Google Scholar

[6] C.V. Ragel, M.Vallet-Regi, L.M. Rodriguez-Lorenzo, Preparation and in vitro bioactivity of hydroxyapatite/solgel glass biphasic material, Biomater. 23 (2002) 1865–1872.

DOI: 10.1016/s0142-9612(01)00313-1

Google Scholar

[7] N. Pramanik, D. Mishra, I. Banerjee, T.K. Maiti, P. Bhargava, P.Pramanik, Chemical Synthesis, Characterization, and Biocompatibility Study of Hydroxyapatite/Chitosan Phosphate Nanocomposite for Bone, Tissue Engg. Appl. 200 (2009) 1-8.

DOI: 10.1155/2009/512417

Google Scholar

[8] E.T. Baran, K.Tuzlakoglu, A.J. Salgado, R.L. Reis, Multichannel mould processing of 3D structures from microporous coralline hydroxyapatite granules and chitosan support materials for guided tissue regeneration/ engineering, J. of Mater. Science: Mater. Medici. 15 (2004) 161-165.

DOI: 10.1023/b:jmsm.0000011818.85273.cd

Google Scholar

[9] N. Eliaz, T.M. Sridhar, U.K. Mudali, B.Raj, Electrochemical and electrophoretic deposition of hydroxyapatite for orthopaedic applications, Surf. Engg. 21 (2005) 1-5.

DOI: 10.1179/174329405x50091

Google Scholar

[10] G.X. Ni, K.Y. Chiu, W.W. Lu, Y. Wang, Y.G. Zhang, L.B. Hao, Z.Y. Li, W.M. Lam, S.B. Lu, K.D.K. Luk, Strontium-containing hydroxyapatite bioactive bone cement in revision hip arthroplasty, Biomater. 27 (2006) 4348-4355.

DOI: 10.1016/j.biomaterials.2006.03.048

Google Scholar

[11] L. Medvecky, R. Stulajterova, L. Parilak, J. Trpcevska, J. Durisin, S.M. Barinov, Influence of manganese on stability and particle growth of hydroxyapatite in simulated body fluid, Coll. and Surf. A: Physico chem. Engg. Aspects. 281 (2006) 221–229.

DOI: 10.1016/j.colsurfa.2006.02.042

Google Scholar

[12] N. Rameshbabu, T.S. Sampath Kumar, T.G. Prabhakar, V.S. Sastry, K.V.G.K. Murty, K.P. Rao, Antibacterial nanosized silver substituted hydroxyapatite: Synthesis and characterization, J. of Biomed. Mater. Res. Part A. 80 (2007) 581–591.

DOI: 10.1002/jbm.a.30958

Google Scholar

[13] G. Frost, C.W. Asling, M.M. Nelson, Skeletal deformities in manganese-deficient rats, The Anatom. Record. 134 (1959) 37–53.

DOI: 10.1002/ar.1091340105

Google Scholar

[14] R.M. Leach Jr, A.M. Muenster, Studies on the role of manganese in bone formation: effect upon the mucopolysaccharide content of chick bone, J. of Nutrition. 78 (1962) 51-56.

DOI: 10.1093/jn/78.1.51

Google Scholar

[15] C.R. Bowen, J.P. Gittings, I.G. Turner, F.Baxter, J.B. Chaudhuri, Dielectric and piezoelectric properties of hydroxyapatite-BaTiO3 composites, Appl. Physics Lett. 89 (2006) 1329061-63.

DOI: 10.1063/1.2355458

Google Scholar

[16] C.C. Silva, A. Almeid, R.S. De Oliveira, A.G. Pinheiro, J.C. Goes, A.S.B. Sombra, Dielectric permittivity and loss of hydroxyapatite screen-printed thick films, J. of Mater. Sci. 38 (2003) 3713-3720.

Google Scholar

[17] S. Hontsu, T. Matsumoto, J. Ishii, M. Nakamori, H. Tabata , T. Kawai, Electrical properties of hydroxyapatite thin films grown by pulsed laser deposition, Thin Solid Films. 295 (1997) 214–217.

DOI: 10.1016/s0040-6090(96)09146-8

Google Scholar

[18] S.L. Shi, W. Pan, R.B. Han, C.L. Wan, Electrical and dielectric behaviours of Ti3SiC2/hydroxyapatite composites, Appl. Physics Lett. 88 (2006) 052903-052903-2

Google Scholar

[19] P.N. Chavan, M.M. Bahir, R.U. Mene, M.P. Mahabole, R.S. Khairnar, Study of nanobiomaterial hydroxyapatite in simulated body fluid:Formation and growth of apatite, Mater. Sci. and Engg. B. 168 (2009) 224-230.

DOI: 10.1016/j.mseb.2009.11.012

Google Scholar

[20] M.P. Mahabole, M.M .Bahir, N.V. Kalyankar, R.S. Khairnar,Effect of incubation in simulated body fluid on dielectric and photoluminescence properties of nano-hydroxyapatite ceramic doped with strontium ions, J. of Biomed. Sci.and Engg. 5 (2012) 396-405.

DOI: 10.4236/jbise.2012.57050

Google Scholar

[21] O.A. Graeve, K. Raghunath, A. Madadi, C.W. Brandon, K.C. Glass, Luminescence variations in hydroxyapatites doped with Eu2+ and Eu3+ ions, Biomater. 31 (2010) 4259-4267.

DOI: 10.1016/j.biomaterials.2010.02.009

Google Scholar

[22] M. Oht, M. Yasud, Y. Sugiyam, Y. Suzuki, H. Okamur, The Behavior of Rare Earth Ions in Hydroxyapatite, Crystal. ECS Trans. 16 (2009) 141-144.

Google Scholar

[23] F.A. Muller, L. Muller, C. Zollfrank, P. Greil, Inherent luminescence of annealed biomimetic apatites, Engg. Mater. 311 (2006) 655-658.

DOI: 10.4028/www.scientific.net/kem.309-311.655

Google Scholar

[24] R.J. Chung, T.S. Chin, H.Y. Cheng, H.W. Wen, M.F. Hsieh, Photo-luminescent hydroxyapatite coating through a bio-mimetic process, Biomol. Engg. 24 (2007) 459-461.

DOI: 10.1016/j.bioeng.2007.07.006

Google Scholar

[25] T.Ikoma, M. Tagaya, T. Tonegawa, M. Okuda, N. Hanagata, T. Yoshioka, D. Chakarov, B. Kasemo, J. Tanaka, The Surface Property of Hydroxyapatite: Sensing with Quartz Crystal Microbalance, Key Engg. Mater. 396 – 398 (2008) 89-92.

DOI: 10.4028/www.scientific.net/kem.396-398.89

Google Scholar

[26] A.C. Tas, Synthesis of biomimetic Ca-hydroxyapatite powders at 37°C in synthetic body fluids, Biomater. 21 (2000) 1429-1438.

DOI: 10.1016/s0142-9612(00)00019-3

Google Scholar

[27] K. Hyun-Min, H. Teruyuki, T. Kokubo, N. Takashi, Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid, Biomater. 26 (2005) 4366-4373.

DOI: 10.1016/j.biomaterials.2004.11.022

Google Scholar