Synthesis and Characterization of Hydroxyapatite Powder from Natural Bovine Bone

Article Preview

Abstract:

Hydroxyapatite was synthesized from bovine cortical bone by thermal decomposition method. The chemically cleaned bone was heated to 160 °C for 48 hour to remove moisture and any organic contents followed by decomposition in muffle furnace at 850 °C for 6 hours. The so-obtained white powder was characterized by Fourier Transform Infrared (FT-IR) spectroscopy and X-Ray Diffraction (XRD), SEM and EDX method. The FT-IR results proved the existence of hydroxyl (OH-) and phosphate (PO4-3) groups in the powder. XRD analysis was in support to the FT-IR spectrum, however, an additional phase of tri-calcium phosphate (TCP) was also observed as an impurity, SEM shows the surface morphology & EDX gives the Calcium (Ca) to Phosphorous (P) ratio. Key Words: Hydroxyapatite; Thermal Decomposition, Calcination

You might also be interested in these eBooks

Info:

Pages:

35-42

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Eny. Kusrini, Aida R. Pudjiastuti, Sotya. Astutiningsih and Sri. Harjanto, International Conference on Chemical, Bio-Chemical and Environmental Sciences (ICBEE'2012) December 14-15, 2012 Singapore.

Google Scholar

[2] Muhammad KusumawanHerliansyah, CandraMuzafar, Alva EdyTontowi, Proceedings of the Asia Pacific Industrial Engineering & Management Systems Conference 2012V. Kachitvichyanukul, H.T. Luong, and R. Pitakaso Eds.

Google Scholar

[3] M. E. Bahrololoom, M. Javidi, S. Javadpour and J. Ma, Journal of Ceramic Processing Research. Vol. 10, No. 2, p.129~138 (2009).

Google Scholar

[4] M. Markovic, B.O. Fowler and M.S. Tung, J. Res. Natl. Inst. Stand. Technol. 109 (2004) 553-568.

Google Scholar

[5] K. Haberko, M.M. Bucko, J. Brzezinska-Miecznik, M. Haberko, W. Mozgawa, T. Panz, A. Pyda and J Zarebski, J. Europ. Ceram. Soc. 26 (2006) 537-542.

DOI: 10.1016/j.jeurceramsoc.2005.07.033

Google Scholar

[6] S. Joschek, B. Nies, R. Krotz, and A. Gopferich, Biomaterials 21 (2000) 1645-1658.

Google Scholar

[7] Robert Kane, Peter X. Ma, Materials Today, Vol. 16(11), 2013, p.418.

Google Scholar

[8] Joon Park, r. S. Lakes, Biomaterials An Introduction, 3rd ed. Springer, (2007).

Google Scholar

[9] Sameer R. Paital, Narendra B. Dahotre, Materials Science and Engineering, R 66, 2009, p.6.

Google Scholar

[10] Joseph D. Bronzino, The Biomedical Engineering Handbook, 2nd ed., CRC Press, Boca Raton, FL., (2000).

Google Scholar

[11] Naseer A. M. Barakat, MyungSeobKhil, A. M. Omran, Faheem A. Sheikh, Hak Young Kim, Journal of Materials Processing Technology, Vol. 209, 2009, p.3409.

Google Scholar

[12] A. Tampieri, G. Celloti, S. Spiro, C. Mingazzini, Mater. Chem. Phys. Vol. 64, 2000, p.54.

Google Scholar

[13] M. Markovic, B. O. Fowler, M. S. Tung, J. Res. Natl. Inst. Stand. Technol. Vol 109, 2004, p.553.

Google Scholar

[14] N. Y. Mostafa, Mater. Chem. Phys. Vol. 94, 2005, p.333.

Google Scholar

[15] M. Manso, C. Jimenez, C. Morant, P. Herrero, J. M. Martinez-Duart, Biomaterials, Vol. 21, 2000, p.1755.

Google Scholar

[16] X. Pang, I. Zhitomirsky, Mter. Chem. Phys. Vol. 94, 2005, p.245.

Google Scholar

[17] M. Wei, A. J. Ruys, B. K. Milthrope, C. C. Sorrell, J. H. Evans, J. Sol-Gel Sci. Technol. Vol. 21, 2001, p.39.

Google Scholar

[18] M. Wei, A. J. Ruys, B. K. Milthrope, C. C. Sorrell, J. Mater. Sci. -Mater. Med. Vol. 16, 2005, p.319.

Google Scholar

[19] X. F. Xiao, R. F. Liu, Mater. Let. Vol. 60, 2006, p.2627.

Google Scholar

[20] D. M. Liu, Q. Yang, T. Troczynski, Biomaterials, Vol. 23, 2002, p.691.

Google Scholar

[21] Y. Han. S. Li. X. Wang. L. Jia, j. He, Mater . Res. Bull. 42, 2007, p.1169.

Google Scholar

[22] L. L Lench, J Wilson, An International to Bioceramics, World Scientific Inc, (1993).

Google Scholar