Damping Micromechanisms for Bones above Room Temperature

Article Preview

Abstract:

The wide damping maximum which is reported to appear in bones, involving both cortical and cancellous parts, between around 280 K and 420 K; has been determined to be a composition of different processes taking place at different temperatures in cancellous and cortical parts. In fact, in the present work the mechanical response of cow ribs bones has been analysed by coupling mechanical spectroscopy, differential scanning calorimetry, thermogravimetry and scanning electron microscopy studies. Cancellous part develops two damping maxima at around 320 K and 350 K. Cortical part exhibits a wide maximum in damping between around 310 K and 410 K and another damping relaxation between 390 K and 410 K. The physical-chemical driving force giving rise to the above relaxation processes are discussed.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] A. Ascenzi, A. Benvenuti, Orientation of collagen fibers at the boundary between two successive osteonic lamellae and its mechanical interpretation, J. of Biomech. 19 (1986) 455 – 463.

DOI: 10.1016/0021-9290(86)90022-9

Google Scholar

[2] V. Cane, G. Marotti, G. Volpi, D. Zaffe, S. Palazzini, F. Remaggi, M.A. Muglia, Size and density of osteocyte lacunae in different regions of long bones, Calcified Tissue Int. 34 (1982) 558 – 563.

DOI: 10.1007/bf02411304

Google Scholar

[3] E.B. Garner, R. Lakes, T. Lee, C. Swan, R. Brand, Viscoelastic dissipation in compact bone: Implications for stress-induced fluid flow in bone, J. Biomech. Eng. 122 (2000) 166 – 172.

DOI: 10.1115/1.429638

Google Scholar

[4] J.F. Mano, Viscoelastic properties of bone: Mechanical spectroscopy studies on a chicken model, Mat. Sci. Eng. C, 25 (2005) 145 – 152.

Google Scholar

[5] R. Schaller, S. Barrault, Ph. Zysset, Mechanical spectroscopy of bovine compact bone, Mat. Sci. Eng. A, 370 (2004) 569 – 574.

DOI: 10.1016/j.msea.2003.08.107

Google Scholar

[6] M.F. Ashby, L.J. Gibson, Cellular solids structure and properties. Cambridge University Press, Cambridge, (1997).

Google Scholar

[7] J.S. Yerramshetty, O. Akkus, The associations between mineral crystallinity and the mechanical properties of human cortical bone, Bone, 42 (2008) 476 – 482.

DOI: 10.1016/j.bone.2007.12.001

Google Scholar

[8] R. Schaller, G. Fantozzi, G. Gremaud, Mechanical Spectroscopy, Trans. Tech. Publications Ltd., Switzerland, (2001).

Google Scholar

[9] B.J. Lazan, Damping of materials and members in structural mechanics, Pergamon, London, (1968).

Google Scholar

[10] T. Wang, Z. Feng, Dynamic mechanical properties of cortical bone: The effect of mineral content, Mater. Lett. 59 (2005) 2277 – 2280.

DOI: 10.1016/j.matlet.2004.08.048

Google Scholar

[11] N.W. Tschoegel, The phenomenological theory of linear viscoelastic behaivour, Springer-Verlag, Berlin, (1989).

Google Scholar

[12] O.A. Lambri, A Review on the problem of measuring non-linear damping and the obtainment of intrinsic damping, in: Walgraef, D.; Martínez-Mardones, J. and Wörner, C. H. (Eds. ), Materials Instabilities, World Scientific Publishing Co. Pte. Ltd., 2000, p.249.

DOI: 10.1142/9789812793317_0005

Google Scholar

[13] L.M. Salvatierra, O.A. Lambri, C.L. Matteo, P.A. Sorichetti, C.A. Celauro, R.E. Bolmaro, Growing of crystalline zones in EPDM irradiated with a low neutron flux, Nucl. Instrum. Meth. B, 225 (2004) 297 – 304.

DOI: 10.1016/j.nimb.2004.04.166

Google Scholar

[14] O.A. Lambri, L.M. Salvatierra, F.A. Sánchez, C.L. Matteo, P.A. Sorichetti, C.A. Celauro, Crystal growth in EPDM by chemi-crystallisation as a function of the neutron irradiation dose and flux level, Nucl. Instrum. Meth. B, 237 (2005) 550 – 562.

DOI: 10.1016/j.nimb.2005.03.012

Google Scholar

[15] O.A. Lambri, J.A. García, W. Riehemann, J.A. Cano, G.I. Zelada-Lambri, F. Plazaola, Dislocation movement in WE43 magnesium alloy during recovery and recrystallisation, Mater. T. JIM. 52 (2011) 1016 – 1025.

DOI: 10.2320/matertrans.m2010374

Google Scholar

[16] O.A. Lambri, W. Riehemann, Z. Trojanová, Mechanical spectroscopy of commercial AZ91 magnesium alloy, Scripta Mater. 45 (2001) 1365 – 1371.

DOI: 10.1016/s1359-6462(01)01171-x

Google Scholar

[17] O.A. Lambri, G.I. Zelada-Lambri, G.J. Cuello, P.B. Bozzano, J.A. García, Study of the temperature evolution of defect agglomerates in neutron irradiated molybdenum single crystals, J. Nucl. Mater. 385 (2009) 552 – 558.

DOI: 10.1016/j.jnucmat.2008.12.312

Google Scholar

[18] T. Mura, Micromechanics of defects in solids, Martinus Nijhoff Publishers, New York, (1987).

Google Scholar

[19] O.A. Lambri, W. Riehemann, Damping due to incoherent precipitates in commercial QE22 magnesium alloy, Scripta Mater. 52 (2005) 93 – 97.

DOI: 10.1016/j.scriptamat.2004.09.021

Google Scholar

[20] G.I. Zelada-Lambri, O.A. Lambri, G.H. Rubiolo, Amplitude dependent damping in austenitic stainless steels 316H and 304H. Its relation with the microstructure, J. Nucl. Mater. 273 (1999) 248 – 256.

DOI: 10.1016/s0022-3115(99)00070-7

Google Scholar

[21] R.R. Mocellini, O.A. Lambri, C.L. Matteo, J.A. García, G.I. Zelada-Lambri, P.A. Sorichetti, F. Plazaola, A. Rodríguez-Garraza, F.A. Sánchez, Elastic misfit in two-phase polymer, Polymer, 50 (2009) 4696 – 4705.

DOI: 10.1016/j.polymer.2009.07.037

Google Scholar

[22] O.A. Lambri, F. Plazaola, E. Axpe, R.R. Mocellini, G.I. Zelada-Lambri, J.A. García, C.L. Matteo, P.A. Sorichetti, Modification of the mesoscopic structure in neutron irradiated EPDM viewed through positron annihilation spectroscopy and dynamic mechanical analysis, Nucl. Instrum. Meth. B, 269 (2011).

DOI: 10.1016/j.nimb.2010.11.095

Google Scholar

[23] M.L. Lambri, J.I. Pérez-Landazábal, V. Recarte, F. Tarditti, O.A. Lambri, Effect of the mesostructure on the mechanical dynamical behaviour in cancellous bones, Acta Microscópica, 22 (2013) 26 – 31.

DOI: 10.4028/www.scientific.net/jbbte.19.87

Google Scholar

[24] A.S. Nowick, B.S. Berry, Anelastic Relaxation in Crystalline Solids, Academic Press, New York, (1972).

Google Scholar

[25] O.A. Lambri, A.L. Peñaloza, A.V. Morón Alcain, M.L. Ortiz, F.C. Lucca, Mecahnical dynamical spectroscopy in Cu-Li alloys produced by electrodeposition, Mat. Sci. Eng. A, 212 (1996) 108 – 118.

DOI: 10.1016/0921-5093(96)10178-7

Google Scholar

[26] I.M. Ward, Mechanical properties of solid polymers, John Wiley & Sons, New York, (1990).

Google Scholar

[27] V. Uskokovic, N. Ignjatovic, N. Petranovic, Synthesis and characterization of hydroxyapatite-collagen biocomposite materials, Mater. Sci. Forum, 413 (2003) 269 – 274.

Google Scholar

[28] J. Benedito, J.A. Carcel, C. Rosello, A. Mulet, Composition assessment of raw meat mixtures using ultrasonics, Meat Sci. 57 (2001) 365 – 370.

DOI: 10.1016/s0309-1740(00)00113-3

Google Scholar

[29] J.A. Babor, J. Ibarz, Modern general chemistry, Marín, Barcelona, (1965).

Google Scholar

[30] B.D. Hames, N.M. Hooper, Instant notes biochemistry, Second edition, BIOS Scientific Publishers, England, (2000).

Google Scholar

[31] J. Yamashita, B.R. Furman, H. R Rawls, X. Wang, C.M. Agrawal, The use of dynamic analysis to assess the viscoelastic properties of human cortical bone, J. Biomed. Mater. Res. 58 (2001) 47 – 53.

DOI: 10.1002/1097-4636(2001)58:1<47::aid-jbm70>3.0.co;2-u

Google Scholar

[32] Y. Dekhtyar, A. Gamza, A. Tatarinov, H. Jansons, Electron and mechanical properties of bone during heating, evaluated by exoelectron emission and ultrasound, Biomaterials 16 (1995) 861 – 863.

DOI: 10.1016/0142-9612(95)94148-e

Google Scholar

[33] K.O. Honikel, Reference methods for the assessment of physical characteristics of meat, Meat Sci. 49 (1998) 447 – 457.

DOI: 10.1016/s0309-1740(98)00034-5

Google Scholar