Advances on Biomedical Titanium Surface Interactions

Article Preview

Abstract:

When used as an implanted material, titanium (Ti) surface controls the subsequent biological reactions and leads to tissue integration. Cells interactions with the surface, through a protein layer that is being formed from the moment Ti surface comes in contact with blood and its components, and indeed this protein layer formation, are regulated by surface properties such as topography, chemistry, charge and surface energy. Currently, the implementation of nanotechnology, in an attempt to support mimicking the natural features of extracellular matrix, has provided novel approaches for understanding and translating surface mechanisms whose modification and tailoring are expected to lead to enhanced cell activity and improved integration. Despite the fact that there has been extensive research on this subject, the sequence of interactions that take place instantly after the exposure of the implanted material into the biologic microenvironment are not well documented and need further investigation as well as the optimization of characteristics of Ti surface. This review, including theoretical and experimental studies, summarizes some of the latest advances on the Ti surface concerning modifications on surface properties and how these modifications affect biomolecular reactions and also attempts to present the initial adsorption mechanism of water and protein molecules to the surface.

You might also be interested in these eBooks

Info:

Pages:

43-64

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.G. Castner, B.D. Ratner, Biomedical surface science: Foundations to frontiers, Surface Sci. 500 (2002) 28-60.

DOI: 10.1016/s0039-6028(01)01587-4

Google Scholar

[2] U. Diebold, The surface science of Ti dioxide, Surf. Sci. Rep. 48 (2003) 53-229.

Google Scholar

[3] V. Sollazzo, F. Pezzetti, A. Scarano, A. Piattelli, L. Massari, G. Brunelli, F. Carinci, Anatase Coating Improves Implant Osseointegration In Vivo, J. Craniofac. Surg. 18 (2007) 806-810.

DOI: 10.1097/scs.0b013e3180a7728f

Google Scholar

[4] J. He, W. Zhou, X. Zhou, X. Zhong, X. Zhang, P. Wan, B. Zhu, W. Chen, The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation, J. Mater. Sci. Mater. Med. 19 (2008) 3465-3472.

DOI: 10.1007/s10856-008-3505-3

Google Scholar

[5] M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys. Condens. Matter. 14 (2002) 2717-2744.

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[6] Additional background material on the Nobel Prize in Chemistry 1998. URL: http: /www. nobelprize. org/nobel_prizes/chemistry/laureates/1998/advanced-chemistryprize1998. pdf, 29/04/(2013).

Google Scholar

[7] W. Kohn, Nobel lecture: Electronic structure of matter-wave functions and density functionals, Rev. Mod. Phys. 71 (1999) 1253-1266.

DOI: 10.1103/revmodphys.71.1253

Google Scholar

[8] L.M. Liu, C. Zhang, G. Thorton, A. Michaelides, Structure and dynamics of liquid water on rutile TIO2 (110), Phys. Rev. B 82 (2010) 161415(R).

Google Scholar

[9] E. Mamontov, L. Vlcek, D.J. Wesolowski, P.T. Cummings, W. Wang, L.M. Anovitz, J. Rosenqvist, C.M. Brown, V.C. Sakai, Dynamics and structure of hydration water on rutile and cassiterite nanopowders studied by Quasielastic Neutron Scattering and Molecular Dynamics Simulations, J. Phys. Chem. C 111 (2007).

DOI: 10.1021/jp067242r

Google Scholar

[10] B. Hammer, S. Wendt, F. Besenbacher, Water adsorption on TiO2. Top. Catal. 53 (2010) 423-430.

DOI: 10.1007/s11244-010-9454-3

Google Scholar

[11] D. J. Wesolowski, J.O. Sofo, A.V. Bandura, Z. Zhang, E. Mamontov, M. Predota, N. Kumar, J.D. Kubicki, P.R.C. Kent, L. Vlcek, M.L. Machesky, P.A. Fenter, P.T. Cummings, L.M. Anovitz, A.A. Skelton, J. Rosenqvist, Comment on Structure and dynamics of liquid water on rutile TiO2 (110), Phys. Rev. B 85 (2012).

DOI: 10.1103/physrevb.85.167401

Google Scholar

[12] L.M. Liu, C. Zhang, G. Thorton, A. Michaelides, Reply to Comment on 'Structure and dynamics of liquid water on rutile TiO2 (110)', Phys. Rev. B 85 (2012) 167402.

Google Scholar

[13] H. Perron, J. Vandenborre, C. Domain, R. Drot, J. Roques, E. Simoni, J.J. Ehrhardt, H. Catalette, Combined investigation of water sorption on TiO2 rutile (110) single crystal face: XPS vs. periodic DFT. Surface Sci. 601 (2007) 518-527.

DOI: 10.1016/j.susc.2006.10.015

Google Scholar

[14] E. Mamontov, D.J. Wesolowski, L. Vlcek, P.T. Cummings, J. Rosenqvist, W. Wang, D.R. Cole, Dynamics of Hydration Water on Rutile Studied By Backscattering Neutron Spectroscopy and Molecular Dynamics Simulation, J. Phys. Chem. C 112 (2008).

DOI: 10.1021/jp711965x

Google Scholar

[15] C. Zhang, P.J.D. Lindan, Multilayer water adsorption on rutile TiO2(110) : A first-principles study, J. Chem. Phys. 118 (2003) 4620-4630.

DOI: 10.1063/1.1543983

Google Scholar

[16] E. Mamontov, L. Vlcek, D.J. Wesolowski, P.T. Cummings, J. Rosenqvist, W. Wang, G. Gasparovic, Suppression of the dynamic transition in surface water at low hydration levels: A study of water on rutile, Phys. Rev. E 79 (2009) 051504.

DOI: 10.1103/physreve.79.051504

Google Scholar

[17] A.V. Bandura, D.G. Sykes, V. Shapovalov, T.N. Troung, J.D. Kubicki, R.A. Evarestov, Adsorption of water on the TiO2 (Rutile) (110) Surface: A Comparison of Periodic and Embedded Cluster Calculations, J. Phys. Chem. B 108 (2004) 7844-7853.

DOI: 10.1021/jp037141i

Google Scholar

[18] F. Hong, Y.H. Ni, W.J. Xu, Y. Yan, Origin of enhanced water adsorption at <110> step edge on rutile TiO2(110), J. Chem. Phys. 137 (2012) 114707.

DOI: 10.1063/1.4753951

Google Scholar

[19] W. Langel, Car-Parrinello simulation of H2O dissociation on rutile, Surface Sci. 496 (2002) 141-150.

DOI: 10.1016/s0039-6028(01)01606-5

Google Scholar

[20] D.P. Song, Y.C. Liang, M.J. Chen, Q.S. Bai, Molecular dynamics study on surface structure and surface energy of rutile TiO2 (110), Appl. Surf. Sci. 255 (2009) 5702-5708.

DOI: 10.1016/j.apsusc.2008.12.062

Google Scholar

[21] A. Kornherr, D. Vogtenhuber, M. Ruckenbauer, R. Podloucky, G. Zifferer, Multilayer adsorption of water at a rutile TiO2 (110) surface: Towards a realistic modeling by molecular dynamics, J. Chem. Phys. 121 (2004) 3722-3726.

DOI: 10.1063/1.1772752

Google Scholar

[22] M.J. Wei, L. Zhang, L. Lu, Y. Zhu, K.E. Gubbins, X. Lu, Molecular behavior of water in TiO2 nano-slits with varying coverages of carbon: a molecular dynamics simulation study, Phys. Chem. Chem. Phys. 14 (2012) 16536-16543.

DOI: 10.1039/c2cp40687j

Google Scholar

[23] J. Carrasco, A. Hodgson, A. Michaelides, A molecular perspective of water at metal interfaces, Nat. Mater. 11 (2012) 667-674.

DOI: 10.1038/nmat3354

Google Scholar

[24] G. Binnig, H. Rohrer, Scanning Tunneling Microscopy, Surface Sci. 126 (1983) 236-244.

DOI: 10.1016/0039-6028(83)90716-1

Google Scholar

[25] C.J. Chen, Introduction to Scanning Tunneling Microscopy, second ed., Oxford University Press, (2008).

Google Scholar

[26] X. Lu, H. Zhang, Y. Leng, L. Fang, S. Qu, B. Feng, J. Weng, N. Huang, The effects of hydroxyl groups on Ca adsorption on rutile surfaces: a first-principles study, J. Mater. Sci. Mater. Med. 21 (2010) 1-10.

DOI: 10.1007/s10856-009-3828-8

Google Scholar

[27] J.Y. Yoon, J.H. Kim, W.S. Kim, Interpretation of protein adsorption phenomena onto functional microsheres, Colloids Surf. B Biointerfaces 12 (1998) 15-22.

DOI: 10.1016/s0927-7765(98)00045-9

Google Scholar

[28] J. Porath, Charge-transfer adsorption in aqueous media, Pure Appl. Chem. 51 (1979) 1549-1559.

DOI: 10.1351/pac197951071549

Google Scholar

[29] C. Tanford, The hydrophobic effect, New York, Wiley, (1981).

Google Scholar

[30] R. Cecil, C.F. Louis, Protein-Hydrocarbon interactions. Interactions of various proteins with pure decane, Biochem. J. 117 (1970) 139-145.

DOI: 10.1042/bj1170139

Google Scholar

[31] J.H. Kim, J.Y. Yoon, Protein adsorption on polymer particles, In: Hubbard A Ed, Encyclopedia of surface and colloid science, Marcel Dekker: New York, 2002, pp.4373-4381.

Google Scholar

[32] A. Oleinikova, N. Smolin, I. Brovchenko, Influence of Water Clustering on the Dynamics of Hydration Water at the Surface of a Lysozyme, Biophys. J. 93 (2007) 2986-3000.

DOI: 10.1529/biophysj.107.108753

Google Scholar

[33] L. Zhang, L. Wang, Y.T. Kao, W. Qiu, Y. Yang, O. Okobiah, D. Zhong, Mapping Hydration dynamics around protein surface, PNAS 104 (2007) 18461-18466.

DOI: 10.1073/pnas.0707647104

Google Scholar

[34] H. Lu, K. Schulten, The key Event in Force-Induced Unfolding of Titin's Immunoglubin Domains, Biophys. J. 79 (2000) 51-65.

DOI: 10.1016/s0006-3495(00)76273-4

Google Scholar

[35] J.K.A. Kamal, L. Zhao, A.H. Zewail, Ultrafast hydration dynamics in protein unfolding: Human serum albumin, PNAS 101 (2004) 13411-13416.

DOI: 10.1073/pnas.0405724101

Google Scholar

[36] Y. Levy, J. Onuchic, Water Mediation in Protein Folding and Molecular Recognition, Annu. Rev. Biophys. Biomol. Struct. 35 (2006) 389-415.

DOI: 10.1146/annurev.biophys.35.040405.102134

Google Scholar

[37] R. Sabarinathan, K. Aishwarya, R. Sarani, M.K. Vaishnavi, K. Sekar, Water-mediated ionic interactions in protein structures, J. Biosci. 36 (2011) 253-263.

DOI: 10.1007/s12038-011-9067-4

Google Scholar

[38] T.M. Raschke, Water structure and interactions with protein surfaces, Curr. Opin. Struct. Biol. 16 (2006) 152-159.

Google Scholar

[39] M. Sotomayor, K. Schulten, Single-Molecule Experiments in Vitro and in Silico, Science 316 (2007) 1144-1148.

DOI: 10.1126/science.1137591

Google Scholar

[40] D. Chandler, Interfaces and the driving force of hydrophobic assembly, Nature 437 (2005) 640-647.

DOI: 10.1038/nature04162

Google Scholar

[41] F. Ganazzoli, G. Raffaini, Computer simulation of polypeptide adsorption on model biomaterials, Phys. Chem. Chem. Phys. 7 (2005) 3651-3663.

DOI: 10.1039/b506813d

Google Scholar

[42] G. Raffaini, F. Ganazzoli, Protein adsorption on biomaterial and nanomaterial surfaces: a molecular modeling approach to study non-covalent interactions, J. Appl. Biomater. Biomech. 8 (2010) 135-145.

DOI: 10.5301/jabb.2010.6093

Google Scholar

[43] E.H. Lee, J. Hsin, M. Sotomayor, G. Comellas, K. Schulten, Discovery through the computional microscope, Structure 17 (2009) 1295-1306.

DOI: 10.1016/j.str.2009.09.001

Google Scholar

[44] D.P. Song, M.J. Chen, Y.C. Liang, Q.S. Bai, J.X. Chen, X.F. Zheng, Adsorption of tripeptide RGD on rutile TiO2 nanotopography surface in aqueous solution, Acta Biomater. 6 (2010) 684-694.

DOI: 10.1016/j.actbio.2009.07.032

Google Scholar

[45] M. Chen, C. Wu, D. Song, K. Li, RGD tripetide onto perfect and grooved rutile surfaces in aqueous solution: adsorption behaviors and dynamics, Phys. Chem. Chem. Phys. 12 (2009) 406-415.

DOI: 10.1039/b917919d

Google Scholar

[46] C. Wu, M. Chen, C. Guo, X. Zhao, C. Yuan, Peptide-TiO2 Interaction in Aqueous Solution: Conformational Dynamics of RGD Using Different Water Models, J. Phys. Chem. B 114 (2010) 4692-4701.

DOI: 10.1021/jp9109223

Google Scholar

[47] H.P. Zhang, X. Lu, L.M. Fang, J. Weng, N. Huang, Y. Leng, Molecular dynamics simulation of RGD peptide adsorption on Ti oxide surfaces, J. Mater. Sci. Mater. Med. 19 (2008) 3437-3441.

DOI: 10.1007/s10856-008-3498-y

Google Scholar

[48] M. Chen, C. Wu, D. Song, W. Dong, K. Li, Effects of grooves on adsorption of RGD tripeptide onto rutile TiO2 (110) surface, J. Mater. Sci. Mater. Med. 20 (2009) 1831-1838.

DOI: 10.1007/s10856-009-3759-4

Google Scholar

[49] H.P. Zhang, X. Lu, Y. Leng, F. Watari, J. Weng, S. Qu, Effects of aqueous environment and surface defects on Arg-Gly-Asp peptide adsorption on Ti oxide surfaces investigated by molecular dynamics simulation, J. Biomed. Mater. Res. A 96 (2010).

DOI: 10.1002/jbm.a.33003

Google Scholar

[50] S. Monti, Molecular Dynamics Simulations of Collagen-like Peptide Adsorption on Ti-Based Material Surfaces, J. Phys. Chem. C 111 (2007) 6086-6094.

DOI: 10.1021/jp070266t

Google Scholar

[51] S. Monti, V. Carravetta, C. Battocchio, G. Iucci, G. Polzonetti, Peptide/TiO2 Surface Interaction: a Theoretical and Experimental Study on the Structure of Adsorbed ALA-GLU and ALA-LYS, Langmuir 24 (2008) 3205-3214.

DOI: 10.1021/la702956t

Google Scholar

[52] C. Wu, M. Chen, C. Xing, Molecular Understanding of Conformational Dynamics of a Fibronectin Module on Rutile (110) Surface, Langmuir 26 (2010) 15972-15981.

DOI: 10.1021/la103010c

Google Scholar

[53] G. Raffaini, F. Ganazzoli, Molecular modelling of protein adsorption on the surface of Ti dioxide polymorphs, Phil. Trans. R. Soc. A 370 (2012) 1444-1462.

DOI: 10.1098/rsta.2011.0266

Google Scholar

[54] J. Schneider, Molecular Dynamics Simulations of Biological Molecules on the Natively Oxidized Ti Surface, PhD Thesis, (2011).

Google Scholar

[55] C. Wu, A.A. Skelton, M. Chen, L. Vlcek, P.T. Cummings, Modeling the Interaction between Integrin-Binding Peptide (RGD) and Rutile Surface: The Effect of Cation Mediation on Asp Adsorption, Langmuir 28 (2012) 2799-2811.

DOI: 10.1021/la204329d

Google Scholar

[56] C. Wu, A.A. Skelton, M. Chen, L. Vlcek, P.T. Cummings, Modeling the Interaction between Integrin-Binding Peptide (RGD) and Rutile Surface: The Effect of Na+ on Peptide Adsorption, J. Phys. Chem. C 115 (2011) 22375-22386.

DOI: 10.1021/jp2061915

Google Scholar

[57] T. Utesch, G. Daminelli, M.A. Mroginski, Molecular Dynamics Simulations of the adsorption of BMP-2 on Surfaces with Medical Relevance, Langmuir 27 (2011) 13144-13153.

DOI: 10.1021/la202489w

Google Scholar

[58] H. Nygren, P. Tengvall, I. Lundstrom, The initial reactions of TiO2 with Blood, J. Biomed. Mater. Res. 34 (1997) 487-492.

DOI: 10.1002/(sici)1097-4636(19970315)34:4<487::aid-jbm9>3.0.co;2-g

Google Scholar

[59] R. Silvennoinen, N. Penttinen, M. Silvennoinen, S. Hason, V. Vetterl, S. Bartakova, P. Prachar, J. Vanek, V. Brezina, Optical Detection Of Protein Adsorption On Doped Ti Surface, Biomaterial Science and Engineering, (2011).

DOI: 10.5772/23294

Google Scholar

[60] S. Lavenus, G. Louarn, P. Layrolle, Nanotechnology and Dental Implants, Int. J. Biomater. 2010 (2010) 915327.

Google Scholar

[61] M.J.P. Biggs, R.G. Richards, M.J. Daldy, Nanotopographical modification: a regulator of cellular function through focal adhesions, Nanomedicine 6 (2010) 619-633.

DOI: 10.1016/j.nano.2010.01.009

Google Scholar

[62] K. Anselme, P. Davidson, A.M. Popa, M. Giazzon, M. Liley, L. Ploux, The interaction of cells and bacteria with surfaces structured at the nanometre scale, Acta Biomater. 6 (2010) 3824-3846.

DOI: 10.1016/j.actbio.2010.04.001

Google Scholar

[63] E. Martinez, E. Engel, C. Lopez-Inglesias, C.A. Mills, J.A. Planell, J. Samitier, Focused ion beam/scanning electron microscopy characterization of cell behavior on polymer micro-/nanopatterned substrates: A study of cell-substrate interactions, Micron 39 (2008).

DOI: 10.1016/j.micron.2006.12.003

Google Scholar

[64] M. Arnold, M. Schwieder, J. Blummel, E.A. Cavalcanti-Adam, M. Lopez-Garcia, H. Kessler, B. Geiger, J.P. Spatz, Cell interactions with hierarchically structured nano-patterned adhesive surfaces, Soft. Matter. 5 (2009) 72-77.

DOI: 10.1039/b815634d

Google Scholar

[65] M. Arnold, E.A. Cavalcanti-Adam, R. Glass, J. Blummel, W. Eck, M. Kantlenher, H. Kessler, J.P. Spatz, Activation of integrin function by nanopatterned adhesive interfaces, ChemPhysChem 5 (2004) 383-388.

DOI: 10.1002/cphc.200301014

Google Scholar

[66] G. Balasundaram, M. Sato, T.J. Webster, Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD, Biomaterials 27 (2006) 2798-2805.

DOI: 10.1016/j.biomaterials.2005.12.008

Google Scholar

[67] R. Smeets, A. Kolk, M. Gerressen, O. Driemel, O. MacieJwski, B. Hermanns-Sachwech, D. Riediger, J.M. Stein, A new biphasic osteoinductive calcium composite material with a negative Zeta potential for bone augmentation, Head Face Med. 5 (2009).

DOI: 10.1186/1746-160x-5-13

Google Scholar

[68] K. Cai, M. Frant, J. Bossert, G. Hildebrand, K. Liefeith, K.D. Jandt, Surface functionalized Ti thin films: Zeta-potential, protein adsorption and cell proliferation. Colloids Surf. B Biointerfaces 50 (2006) 1-8.

DOI: 10.1016/j.colsurfb.2006.03.016

Google Scholar

[69] O.I. Smith, M.J. Baumann, L.R. McCade, Electrostatic interactions as a predictor for osteoblast attachment to biomaterials, J. Biomed. Mater. Res. 70 (2004)436-441.

DOI: 10.1002/jbm.a.30098

Google Scholar

[70] E. Buerer, N.V. Venkataraman, N. Sommer, N.D. Spencer, Protein and nanoparticle adsorption on orthogonal, charge-density-versus-net-charge surface chemical gradients, Langmuir 28 (2012) 3159-3166.

DOI: 10.1021/la203964a

Google Scholar

[71] D. Kabaso, E. Gongadze, S. Perutkova, C. Matschegewski, V. Kralj-Iglic, U. Beck, U. van Reinen, A. Iglic, Mechanics and electrostatics of the interactions between osteoblasts and Ti surface, Comput. Methods Biomech. Biomed. Engin. 14 (2011).

DOI: 10.1080/10255842.2010.534986

Google Scholar

[72] R. Silvennoinen, S. Hason, V. Vetterl, N. Pentinnen, M. Silvennoinen, K. Myller, P. Cernochova, S. Bartakova, P. Prachar, L. Cvrcek, Diffractive-optics-based sensor as a tool for detection of biocompatibility of Ti and Ti-doped hydrocarbon samples, Appl. Opt. 49 (2010).

DOI: 10.1364/ao.49.005583

Google Scholar

[73] T.F. Keller, J. Reichert, T.P. Thanh, R. Adjiski, L. Spiess, L. Bertzina-Cimdina, K.D. Jandt, J. Bossert, Facets of protein assembly on nanostructured Ti oxide surfaces. Acta Biomater. 9 (2012) 5810-5820.

DOI: 10.1016/j.actbio.2012.10.045

Google Scholar

[74] N. Lee, D.R. Hummer, D.A. Sverjensky, T. Rajh, R.M. Hazen, A. Steele, G.D. Cody, Speciation of L-DOPA on nano-rutile as a function of pH and surface coverage using surface-enhanced Raman spectroscopy (SERS), Langmuir 28 (2012) 17322-17330.

DOI: 10.1021/la303607a

Google Scholar

[75] C.J. Wilson, R.E. Clegg, D.I. Leavesley, M.J. Pearcy, Mediation of biomaterial-cell interactions by adsorbed proteins: a review, Tissue Eng. 11 (2005) 1-18.

DOI: 10.1089/ten.2005.11.1

Google Scholar

[76] P. Roach, D. Farrar, C.C. Perry, Interpretation of protein adsorption: surface-induced conformational changes, J. Am. Chem. Soc. 8 (2005) 8168-8173.

DOI: 10.1021/ja042898o

Google Scholar

[77] M.J. Dalby, D. McCloy, M. Robertson, H. Agheli, D. Sutherland, S. Affrossman, R.O.C. Oreffo, Osteoprogenitor response to semi-ordered and random nanotopographies, Biomaterials 27 (2006) 2980-2987.

DOI: 10.1016/j.biomaterials.2006.01.010

Google Scholar

[78] K.C. Popat, L. Leoni, C.A. Gimes, T.A. Desai, Influence of engineered titania nanotubular surfaces on bone cells, Biomaterials 28 (2007) 3188-3197.

DOI: 10.1016/j.biomaterials.2007.03.020

Google Scholar

[79] J. Park, S. Bauer, K. von der Mark, P. Schmuki, Nanosize and Vitality: TiO2 Nanotube Diameter Directs Cell Fate, Nano Lett. 7 (2007) 1686-1691.

DOI: 10.1021/nl070678d

Google Scholar

[80] J. Park, S. Bauer, K.A. Schlegel, F.W. Neukam, K. von der Mark, P. Schmuki, TiO2 Nanotube Surfaces: 15nm- An Optimal Length Scale for Surface Topography for Cell Adhesion and Differentiation, Small 5 (2009) 666-671.

DOI: 10.1002/smll.200801476

Google Scholar

[81] S. Lavenus, M. Berreur, V. Trichet, P. Pilet, G. Louarn, P. Layrolle, Adhesion and osteogenic differentation of human mesenchymal stem cells on Ti nanopores. Eur. Cell Mater. 22 (2011) 84-96.

DOI: 10.22203/ecm.v022a07

Google Scholar

[82] J. Zuo, X. Huang, X. Zhong, B. Zhu, Q. Sun, C. Jin, H. Quan, Z. Tang, W. Chen, A comparative study of the influence of three pure Ti plates with different micro- and nanotopographic surfaces on preosteoblast behavior, J. Biomed. Mater. Res. A 101 (2013).

DOI: 10.1002/jbm.a.34612

Google Scholar

[83] T.P. Kunzler, C. Huwiler, T. Drobek, J. Voros, N.D. Spencer, Systematic study of osteoblast response to nanotopography by means of nanoparticle-density gradients, Biomaterials 28 (2007) 5000-5006.

DOI: 10.1016/j.biomaterials.2007.08.009

Google Scholar

[84] S. Oh, K.S. Brammer, Y.S.J. Li, D. Teng, A.J. Engler, S. Chien, S. Jin, Stem sell fate dictated solely by altered nanotube dimension, PNAS 106 (2009) 2130-2135.

DOI: 10.1073/pnas.0813200106

Google Scholar

[85] R.B.L. Bueno, P. Adachi, L.M.S. de Castro-Raucci, A.L. Rosa, A. Nanci, P.T. de Oliveira, Oxidative nanopatterning of Ti surfaces promotes production and extracellular accumulation of osteopontin, Braz. Dent. J. 22 (2011) 179-184.

DOI: 10.1590/s0103-64402011000300001

Google Scholar

[86] T. Sjostrom, M.J. Dalby, A. Hart, R. Tare, R.O.C. Oreffo, B. Su, Fabrication of pillar-like titania nanostructures on Ti and their interactions with human skeletal stem cells, Acta Biomater. 5 (2009) 1433-1441.

DOI: 10.1016/j.actbio.2009.01.007

Google Scholar

[87] J.W. Lee, K.B. Lee, H.S. Jeon, H.K. Park, Effects of Surface Nano-Topography on Human Osteoblast Filopodia, Anal. Sci. 27 (2011) 369-374.

DOI: 10.2116/analsci.27.369

Google Scholar

[88] A. Hart, N. Gadegaavd, C.D.W. Wilkinson, R.O.C. Oreffo, M. Dalby, Osteoprogenitor response to low-adhesion nanotopographies originally fabricated by electron beam lithography, J. Mater. Sci. Mater. Med. 18 (2007) 1211-1218.

DOI: 10.1007/s10856-007-0157-7

Google Scholar

[89] L. Zhao, S. Mei, P.K. Chu, Y. Zhang, Z. Wu, The influence of hierarchical hybrid micro/nano-textured Ti surface with titania naotubes on osteoblast functions, Biomaterials 31 (2010) 5072-5082.

DOI: 10.1016/j.biomaterials.2010.03.014

Google Scholar

[90] K. Kubo, N. Tsukimura, F. Iwasa, T. Ueno, L. Saruwatari, H. Aita, W.A. Chiou, T. Ogawa, Cellular behavior on TiO2 nanonodular structures in a micro-to-nanoscale hierarchy model, Biomaterials 30 (2009) 5319-5329.

DOI: 10.1016/j.biomaterials.2009.06.021

Google Scholar

[91] S. Puckett, R. Pareta, T.J. Webster, Nano rough micron patterned Ti for directing osteoblast morphology and adhesion, Int. J. Nanomedicine 3 (2008) 229-241.

DOI: 10.2147/ijn.s2448

Google Scholar

[92] R.A. Gittens, R. Olivares-Navarrete, A. Cheng, D.M. Anderson, T. McLachlan, I. Stephan, J. Geis-Gerstorfer, K.H. Sandhage, A.G. Fedorov, F. Rupp, B.D. Boyan, R. Tannenbaum, Z. Schwartz, The roles of Ti surface micro/nanotopography and wettability on the diffential response of human osteoblast lineage cells, Acta Biomater. 9 (2013).

DOI: 10.1016/j.actbio.2012.12.002

Google Scholar

[93] R. Jimbo, Y. Xue, M. Hayashi, H.O. Schwartz-Filo, M. Andersson, K. Mustafa, A. Wennerberg. Genetic Responses to Nanostructured Calcium-phosphate-coated Implants, J. Dent. Res. 90 (2011) 1422-1427.

DOI: 10.1177/0022034511422911

Google Scholar

[94] V. Bucci-Sabattini, C. Cassinelli, P.G. Coelho, A. Minnici, A. Trani, D.M.D. Ehrenfest, Effect of Ti implant surface nanoroughness and calcium phosphate low impregnation on bone cell activity in vitro, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 109 (2010).

DOI: 10.1016/j.tripleo.2009.09.007

Google Scholar

[95] S. Dimitrievska, M.N. Bureau, J. Antoniou, F. Mwale, A. Petit, R.S. Lima, B.R. Marple, Titania-hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentation, J. Biomed. Mater. Res. 98 (2010) 576-588.

DOI: 10.1002/jbm.a.32964

Google Scholar

[96] A. Gorannon, A. Arvidsson, F. Currie, V. Franke-Stenport, P. Kjellin, K. Mustafa, Y.T. Sul, A. Wennerberg, An in vitro comparison of possible bioactive Ti implant surfaces, J. Biomed. Mater. Res. 88 (2007) 1037-1047.

DOI: 10.1002/jbm.a.31911

Google Scholar

[97] H. Zreigat, S.M. Valenzuela, B.B. Nissan, R. Roest, C. Knabe, R.J. Radlanski, H. Renz, P.J. Evans, The effect of surface chemistry modification of Ti alloy on signalling pathways in human osteoblasts, Biomaterials 26 (2005) 7579-7586.

DOI: 10.1016/j.biomaterials.2005.05.024

Google Scholar

[98] Z. Xia, X. Yu, M. Wei, Biomimetic collagen/apatite coating formation on Ti6Al4V substrates, J. Biomed. Mater. Res. B Appl. Biomater. 100 (2012) 871-881.

DOI: 10.1002/jbm.b.31970

Google Scholar

[99] P. Yin, F.F. Feng, T. Lei, X.H. Zhong, X.C. Jian, Osteoblastic cell response on biphasic Fluorhydroxyapatite/strontium-substituted hydroxyapatite coatings, J. Biomed. Mater. Res. A 102 (2014) 621-627.

DOI: 10.1002/jbm.a.34723

Google Scholar

[100] T.J. Webster, C. Ergun, R.H. Doremus, W.A. Lanford, Increased osteoblast adhesion on Ti coated hydroxyapatite that forms CaTiO3, J. Biomed. Mater. Res. A 67 (2003) 975-980.

DOI: 10.1002/jbm.a.10160

Google Scholar

[101] C. Ergun, H. Liu, J.W. Halloran, T.J. Webster, Increased osteoblast adhesion on nanograined hydroxyapatite and tricalcium phosphate containing calcium titanate, J. Biomed. Mater. Res. A 80 (2006) 990-997.

DOI: 10.1002/jbm.a.30923

Google Scholar

[102] T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, R. Bizios, Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics, J. Biomed. Mater. Res. 51 (2000) 475-483.

DOI: 10.1002/1097-4636(20000905)51:3<475::aid-jbm23>3.0.co;2-9

Google Scholar

[103] A.J. Dulgar-Tulloch, R. Bizios, R.W. Siegel, Human mesenchymal stem cell adhesion and proliferation in response to ceramic chemistry and nanoscale topography, J. Biomed. Mater. Res. 90 (2007) 586-594.

DOI: 10.1002/jbm.a.32116

Google Scholar

[104] J. Malmstrom, B. Christensen, J. Lovmand, E.S. Sorensen, M. Duch, D.S. Sutherland, Osteopontin presentation affects cell adhesion-Influence of underlying surface chemistry and nanopatterning of osteopontin, J. Biomed. Mater. Res. A 95 (2010).

DOI: 10.1002/jbm.a.32879

Google Scholar

[105] K.S. Brammer, C. Choi, C.J. Frandsen, S. Oh, G. Johnston, S. Jin, Comparative cell behavior on carbon-coated TiO2 nanotube surfaces fo osteoblasts vs. osteo-progenitor cells, Acta Biomater. 7 (2011) 2697-2703.

DOI: 10.1016/j.actbio.2011.02.039

Google Scholar

[106] Y. Lu, J.S. Lee, N. Nemke, B.K. Graf, K. Royalty, R.I. Ill, R. Vanderby Jr, M.D. Markel, W.L. Murphy, Coating with a Modular Bone Morphogenetic Peptide promotes healing of bone-implant gap in an ovine model, Plos One 7 (2012) e50378.

DOI: 10.1371/journal.pone.0050378

Google Scholar

[107] S.M. Kang, B. Kong, E. Oh, J.S. Choi, I.S. Choi, Osteoconductive conjugation of bone morphogenetic protein-2 onto Ti/Ti oxide surfaces coated with non-biofouling poly(poly(ethylene glycol)methacrylate), Colloids Surf. B Biointerfaces 75 (2010).

DOI: 10.1016/j.colsurfb.2009.08.039

Google Scholar

[108] T.L.M. Pohl, J.H. Boergermann, G.K. Schwaerzer, P. Knaus, E.A. Cavalcanti-Adam, Surface immobilization of bone morphogenetic protein-2 via self-assembled monolayer formation induces cell differentiation, Acta Biomater. 8 (2012) 772-780.

DOI: 10.1016/j.actbio.2011.10.019

Google Scholar

[109] M. Lai, K. Cai, L. Zhao, X. Chen, Y. Hou, Z. Yang, Surface functionalization of TiO2 nanotubes with Bone Morphogenetic Protein-2 and its synergistic effect on the differentiation on mesenchymal stem cells, Biomacromolecules 12 (2011) 1097-1105.

DOI: 10.1021/bm1014365

Google Scholar

[110] S. Piskounova, J. Forsgren, U. Brohede, H. Engqvist, M. Stromme, In vitro characterization of bioactive Ti dioxide/Hydrohyapatite surfaces functionalized with BMP-2, J. Biomed. Mater. Res. B Appl. Biomater. 91 (2009) 780-787.

DOI: 10.1002/jbm.b.31456

Google Scholar

[111] N.J. Shah, J. Hong, M.H. Hyder, P.T. Hammond, Osteophilic Multilayer Coatings for Accelerated Bone Tissue Growth, Adv. Mater. 24 (2012) 1445-1450.

DOI: 10.1002/adma.201104475

Google Scholar

[112] Y. Hu, K. Cai, Z. Luo, Y. Zhang, L. Li, M. Lai, Y. Hou, Y. Huang, J. Li, X. Ding, B. Zhang, K.L.P. Sung, Regulation of the differentiation of mesenchymal stem cells in vitro and osteogenesis in vivo by microenvironmental modification of Ti alloy surfaces, Biomaterials 33 (2012).

DOI: 10.1016/j.biomaterials.2012.01.040

Google Scholar

[113] G. Balasundaram, C. Yao, T.J. Webster, TiO2 nanotubes functionalized with region of bone morphogenetic protein-2 increases osteoblast adhesion, J. Biomed. Mater. Res. 84 (2007) 447-453.

DOI: 10.1002/jbm.a.31388

Google Scholar

[114] R.G. Craig, Restorative Dental Materials, St Louis, C.V. Mosby, 1999, pp.65-112.

Google Scholar

[115] F. Schwarz, M. Wieland, Z. Schwartz, G. Zhao, F. Rupp, J. Geis-Gerstorfer, A. Schedle, N. Broggini, M.M. Bornstein, D. Buser, S.J. Ferguson, J. Becker, B.D. Boyan, D.L. Cochran, Potential of chemically modified hydrophilic surface characteristics to support tissue integration of Ti dental implants, J. Biomed. Mate. Res. B Appl. Biomater. 88 (2008).

DOI: 10.1002/jbm.b.31233

Google Scholar

[116] A. Wennerberg, T. Albrektsson, Structural influence from Calcium Phosphate coatings and its possible effect on enhanced bone integration, Acta Odontol. Scand. 67 (2009) 333-40.

DOI: 10.1080/00016350903188325

Google Scholar

[117] N. Donos, S. Hamlet, N.P. Lang, G.E. Salvi, G. Huynh-Ba, D.D. Bosshardt, S. Ivanovski, Gene expression profile of osseointegration of a hydrophilic compared with a hydrophobic microrough implant surface, Clin. Oral Impl. Res. 22 (2011) 365-372.

DOI: 10.1111/j.1600-0501.2010.02113.x

Google Scholar

[118] J. Vlacic-Zischke, S.M. Hamlet, T. Friis, M.S. Tonetti, S. Ivanovski, The influence of surface microroughness and hydrophilicity of Ti on the up-regulation of TGFβ/BMP signaling in osteoblasts, Biomaterials 32 (2011) 665-671.

DOI: 10.1016/j.biomaterials.2010.09.025

Google Scholar

[119] D. Khang, J. Lu, C. Yao, K.M. Haberstroh, T.J. Webster, The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on Ti, Biomaterials 29 (2008) 970-983.

DOI: 10.1016/j.biomaterials.2007.11.009

Google Scholar

[120] M.C. Advincula, F.G. Rahemtulla, R.C. Advincula, E.T. Ada, J.E. Lemons, S.L. Bellis, Osteoblast adhesion and matrix mineralization on sol-gel-derived Ti oxide, Biomaterials 27 (2006) 2201-2212.

DOI: 10.1016/j.biomaterials.2005.11.014

Google Scholar

[121] E.W. Zhang, Y.B. Wang, K.G. Shuai, F. Gao, Y.J. Bai, Y. Cheng, X.L. Xiong, Y.F. Zheng, S.C. Wei, In vitro and in vivo evaluation of SLA Ti surfaces with further alkali or hydrogen peroxide and heat treatment, Biomed. Mater. 6 (2011) 1-7.

DOI: 10.1088/1748-6041/6/2/025001

Google Scholar

[122] P.T. De Oliveira, S.F. Zalzal, M.M. Beloti, A.L. Rosa, A. Nanci, Enhancement of in vitro osteogenesison Ti by chemically produced nanotopography, J. Biomed. Mater. Res. 80 (2006) 554-564.

DOI: 10.1002/jbm.a.30955

Google Scholar

[123] M. Hayashi, R. Jimbo, L. Lindh, J. Sotres, T. Sawase, K. Mustafa, M. Andersson, A. Wennerberg, In vitro characterization and osteoblast responses to nanostructured photocatalytic TiO2 coated surfaces, Acta Biomater. 8 (2012) 2411-2416.

DOI: 10.1016/j.actbio.2012.03.010

Google Scholar

[124] P. Decuzzi, M. Ferrari, Modulating cellular adhesion through nanotopography, Biomaterials 31 (2010) 173-179.

DOI: 10.1016/j.biomaterials.2009.09.018

Google Scholar

[125] E. Martinez, E. Engel, J.A. Planell, J. Samitier, Effects of artifial micro- and nano-structured surfaces on cell behaviour, Ann. Anat. 191 (2008) 126-135.

DOI: 10.1016/j.aanat.2008.05.006

Google Scholar