3D Elastomeric Scaffolds Fabricated by Casting in Micro End Milled Moulds

Article Preview

Abstract:

It is known that conventional scaffold manufacturing techniques have low reproducibility and control of the micro-architecture features. Although there have been advances in bone tissue engineering fabrication, there is no consensus on the optimized parameter designs or clear understanding of the microfluidic interactions required for tissue regeneration. In this work, we introduce a new inexpensive fabrication method of producing pore designs of 3D-elastomeric structures with high controlled geometry of orthogonal arrays. The present fabrication method utilizes a permanent and reusable micro-machined mould along with a micro-casted process to efficiently fabricate diverse 3D feature directly. This fabrication method, without multiple process steps, would be suitable to support experiments of controlled environment for flow effects in 3D bone scaffolds.

You might also be interested in these eBooks

Info:

Pages:

17-23

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.L. Weinstein: J Bone Joint Surg Am 2000; 82(1): 1-3.

Google Scholar

[2] P.J.S. Bartolo, H. Almeida, T. Laoui: Int. J. Comput. Appl. Technol. 2009; 36(1): 1-9.

Google Scholar

[3] G.M. Whitesides: Nature 2006; 442(7101): 368-373.

Google Scholar

[4] W-C. Sung, C-C. Chang, H. Makamba, et al.: Analytical Chemistry 2008; 80(5): 1529-1535.

Google Scholar

[5] D.B. Weibel, W.R. DiLuzio, G.M. Whitesides: Nature Reviews Microbiology 2007; 5(3): 209-218.

Google Scholar

[6] E. Leclerc, B. David, L. Griscom, et al.: Biomaterials 2006; 27(4): 586-595.

Google Scholar

[7] Y. Mi, Y. Chan, D. Trau, et al.: Chen E. Polymer 2006; 47(14): 5124-5130.

Google Scholar

[8] J. Park, C.H. Cho, N. Parashurama, et al.: Lab on a Chip 2007; 7(8): 1018-1028.

Google Scholar

[9] N. van Danny, O. Siew Min, Chi Z, et al.: Biotechnology Progress 2009; 25(1): 52-60.

Google Scholar

[10] E. Leclerc, Y. Sakai, T. Fujii: Biomedical Microdevices 2003; 5(2): 109-114.

Google Scholar

[11] L. Eric, S. Yasuyuki, F. Teruo: Biotechnology Progress 2004; 20(3): 750-755.

Google Scholar

[12] G. Vozzi, C. Flaim, A. Ahluwalia, S. Bhatia: Biomaterials 2003; 24(14): 2533-2540.

DOI: 10.1016/s0142-9612(03)00052-8

Google Scholar

[13] Z. Han, W.H. Dietmar, C. Franck, et al.: Macromolecular Bioscience 2005; 5(6): 477-489.

Google Scholar

[14] A. Mata, E.J. Kim, C.A. Boehm, et al.: Biomaterials 2009; 30(27): 4610-4617.

Google Scholar

[15] V.I. Sikavitsas, J.S. Temenoff, A.G. Mikos: Biomaterials 2001; 22: 2581.

Google Scholar

[16] R.B. Martin, D.B. Burr, N.A. Sharkey: Skeletal Tissue Mechanics: Springer; 1998. 392 p.

Google Scholar

[17] V. Karageorgiou, D. Kaplan: Biomaterials: Elsevier; 2005. pp.5474-91.

Google Scholar

[18] J.D. Bobyn, R.M. Pilliar, H.U. Cameron, et al.: Clin Orthop Relat Res 1980(150): 263-70.

Google Scholar

[19] P.S. Eggli, W. Moller, R.K. Schenk. Clinical Orthopaedics & Related Research July 1988; 232: 127-138.

Google Scholar

[20] H-Y. Cheung, K-T. Lau, T-P. Lu, et al.: Composites Part B: Engineering 2007; 38(3): 291-300.

Google Scholar

[21] Y. Kuboki, Q. Jin, H. Takita: J Bone Joint Surg Am 2001; 83(1_suppl_2): S105-115.

Google Scholar

[22] S.J. Hollister, C.Y. Lin, E. Saito, et al.:, Orthod Craniofac Res 2005; 8(3): 162-73.

Google Scholar

[23] R.M. Schek, E.N. Wilke, S.J. Hollister, et al.: Biomaterials 2006; 27(7): 1160-1166.

Google Scholar

[24] A. Blake. Enhancements to Brain Tissue Perfusion Devices through Microfluidic and the Implications Involved. Madison: Dissertation, University of Wisconsin; (2010).

Google Scholar

[25] T.J. Webster, R.W. Siegel, R. Bizios: Scripta Materialia 2001; 44(8-9): 1639-1642.

Google Scholar

[26] J.W. Thomas, E. Celaletdin, H.D. Robert, et al.: J. Biomedical Materials Research 2000; 51 (3): 475-483.

Google Scholar

[27] F.R. Rose, L.A. Cyster, D.M. Grant, et al.: Biomaterials 2004; 25(24): 5507-5514.

Google Scholar