Development of a Bioabsorbable Glass-Reinforced-Glass Intra-Osseous Scaffold for Fracture Healing

Article Preview

Abstract:

Intramedullary (IM) nails are routinely used to stabilize long bone fractures. They can however lead to stress shielding, pain, migration, obstruct hematopoietic tissue, become a loci for infection, and require subsequent surgical retrieval. Novel intra-osseous scaffold (IOS™) prototypes for fracture healing have been developed to function as a regenerative scaffold to enhance callous formation under mechanically stabilized conditions then resorb. Prototype fixation pins and rod systems were formed from glass-reinforced-glass. Flexion, torsion and shear tests were performed to evaluate the composite pins and rods. A modular rod design was successfully deployed and dilated while in a deformable state. When fitted and gripping the intramedullary canal then set in a rigid state. An obliquely sectioned ovine femur was used as a long bone fracture model for deployment and mechanical verification. Flexural support provided by the intramedullary scaffold was superior to multiple k-wire fixation, while the k-wire approach was more stabilizing under torsional loads. Glass reinforced glass samples were mechanically tested after soaking for up to 4 weeks in saline. Strength and modulus of the composite was reduced to approximately 25% of initial values after 2 weeks.

You might also be interested in these eBooks

Info:

Pages:

81-91

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Broos, A. Sermon, Acta. Chir. Belg., Vol. 104 (2004), pp.396-400.

Google Scholar

[2] L. Richard & D. Rudy, Veterinary Surgery, Vol. 3 (1974) p.23–27.

Google Scholar

[3] D. Cumming, N. Mfula, J. Jones, Int Orthop., Vol. 32 (2008), p.421–423.

Google Scholar

[4] M. Khazzam, C. Tassone, X. Liu, R. Lyon, B. Freeto, J. Schwab, J. Thometz, Am J Orthop., Vol. 38 (2009), E49-E55.

Google Scholar

[5] I. Huber , H. Keller, P. Huber, K. Rehm, J Pediatr Orthop, Vol. 16 (1996), pp.602-5.

Google Scholar

[6] I. Sinisaari, PhD Dissertation, Helsinki University Central Hospital, (2004).

Google Scholar

[7] W. Ciccone, C. Motz, C. Bentley, J. Tasto, J. Am. Acad. Orthop. S. Vol. 9 (2001) pp.280-288.

Google Scholar

[8] H. Pihlajamaki, E. Makela, N. Ashammakhi, J. Viljanen, H. Patiala, P. Rokkanen, J. Mat. Sci.: Mats Med., Vol. 13 (2002), pp.389-395.

Google Scholar

[9] J. Vasenius, S. Vainionpaa, K. Vihtonen, A. Makela, P. Rokkanen, Biomaterials Vol. 11 (1990), p.501 – 504.

Google Scholar

[10] S. Santavirta, Y. Konttinen, T. Saito, M. Gronblad, E. Partio, P. Kemppinen, P. Rokkanen, J. Bone Joint Surg., (Vol 72B), pp.597-600.

DOI: 10.1302/0301-620x.72b4.2166048

Google Scholar

[11] O. Bostman, H. Pihlajamaki, Clinical Orthopaedics and Related Research, Vol. 371 (2000) pp.216-227.

Google Scholar

[12] H. Pihlajamaki, S. Salminen, O. Laitlinen, O. Tynninen, O. Bostman, J. Orth. Res. , Vol. 24 (2006), p.1597–1606.

Google Scholar

[13] H. Miettinen, A. Makela, P. Rokkanen, P. Tormala, J. Vainio, Clin. Mat. Vol. 9 (1992), pp.31-36.

Google Scholar

[14] M. Manninen, T. Pohjonen, Biomaterials Vol. 14 (1991), p.305 – 312.

Google Scholar

[15] J. Viljanen, J. Kinnunen, S. Bondestam, P. Rokkanen, J. Bio. Res., Vol. 39 (1998), pp.222-228.

Google Scholar

[16] J. Viljanen, H. Philajamaki, J. Kinnunen, S. Bondestam, P. Rokkanen, J. Jap. Orth. Assoc. Vol 6 (2001), pp.160-166.

Google Scholar

[17] A. Majola, S. Vainionpaa, K. Vihtonen, J. Vasenius, P. Tormala, P. Rokkanen, Int. Orthopaedics Vol. 16 (1992), pp.101-108.

Google Scholar

[18] D. Wright–Charlesworth, J. King, D. Miller, C. Lim, J. Biom. Mat. Res. Vol. 78 (2006), pp.541-549.

Google Scholar

[19] G. Jiang, M. Evans, I. Jones, C. Rudd, C. Scotchford, G. Walker, Biomaterials, Vol. 26, (2005), pp.2281-2288.

Google Scholar

[20] G. Song, S. Song, Adv. Eng. Mat. Vol. 9 (2007), p.298–302.

Google Scholar

[21] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer–Lindenberg A, C. Wirth, H. Windhagen, Biomaterials, Vol 26 (2005), p.3557–3563.

DOI: 10.1016/j.biomaterials.2004.09.049

Google Scholar

[22] F. Witte, J. Fischer, J. Nellesen, H. Crostack, V. Kaese, A. Pisch, F. Beckmann, H. Windhagen, Biomaterials, Vol. 27 (2006), p.1013 – 1018.

DOI: 10.1016/j.biomaterials.2005.07.037

Google Scholar

[23] B. Zberg, P. Uggowitzer, F. Löffler, Nature Materials Vol. 8 (2009), pp.887-891.

Google Scholar

[24] J. Li, T. Rickett and R. Shi, Langmuir, Vol. 25, (2009), p.1813–1817.

Google Scholar

[25] H. Chung, T. Park, Adv. Drug Del. Reviews, Vol. 59 (2007) p.249–262.

Google Scholar

[26] L. Lu, Q. Zhang, D. Wootton, P. Lelkes & J. Zhou, Rapid Prot. J, Vol. 16, (2010), p.365–376.

Google Scholar

[27] Y. Nomuraa, M. Ikedaa, N. Yamaguchib, Y. Aoyamaa, K. Akiyoshi, FEBS Letters, Vol. 553, pp.271-276.

Google Scholar

[28] S. Liyanage, P. Boughton, G. Roger, J. Hyvarinen, A. Ruys, J Biomimetics. Biom. Tis. Eng., Vol. 4 (2009), pp.71-95.

Google Scholar

[29] T. Flinkklia, Masters Dissertation, University of Oulu, (2004).

Google Scholar

[30] D. Lorich, D. Geller, S. Yacoubian, A. Leo, D. Helfet, Orthop., Vol. 10 (2003), pp.1011-1014.

Google Scholar

[31] G. Panidis, F. Sayegh, A. Beletsiotis, D. Hatziemmanuil, K. Antosidis, K. Natsis, Osteo Trauma Care Vol 11 (2003), pp.108-112.

Google Scholar

[32] P. Ben-Galim, Y. Rosenblatt, N. Parnes, S. Dekel, E. Steinberg, Vol. 455 (2007), pp.234-240.

Google Scholar