Impact of Different Load Profile Patterns on Intermittent Renewable Energy Systems for an Off Grid Power System

Article Preview

Abstract:

The continuous desire to drift from the conventional sources of energy to renewable energy resources is stymied by the intermittent nature of some of renewable sources such as solar and wind. However, analyses on some of the required conditions in which intermittent energy resources will be attractive and when it will be less attractive are presented in this paper.Pearson’s product moment of correlation coefficient (r) technique was used to calculate to calculate the correlation coefficient with respect to how three distinct hourly load profiles relate to the available solar radiation. The three calculated r values were analysed and applied as the operating strategies for modelling the power system in RETScreen softwareThe results from the three strategies employed show that the positive r value strategy was the most viable option and it can compete with the diesel only system.Therefore, for a distributed power generation system that utilizes an intermittent energy source, the relationship between the intermittent source and the load profile should be considered as an important indicator for determining the feasibility of the project.

You might also be interested in these eBooks

Info:

Pages:

82-93

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. G. Marinopoulos, M. C. Alexiadis, & P.S. Dokopoulos, 'Energy losses in a distribution line with distributed generation based on stochastic power flow',. Electric Power Systems Research, 81(10), p.1986.

DOI: 10.1016/j.epsr.2011.06.006

Google Scholar

[2] O. S. Ohunakin, 'Energy utilization and renewable energy sources in Nigeria', Journal of Engineering and Applied Sciences, vol 5, issue 2, p.171–177, (2010).

Google Scholar

[3] O. S. Ohunakin, 'Wind resource evaluation in six selected high altitude locations in Nigeria',. Renewable Energy, vol36, issue 12, p.3273–3281, 2011. doi: 10. 1016/j. renene. 2011. 04. 026.

DOI: 10.1016/j.renene.2011.04.026

Google Scholar

[4] K. Ajao, O. Oladosu, & O. Popoola, 'Using HOMER power optimization software for cost benefit analysis of Hybrid-solar power generation relative to utility cost in Nigeria',. International Journal of Research and reviews in Applied Sciences, vol7, issue 1, pp.96-102, (2011).

DOI: 10.4314/jast.v16i1-2.64779

Google Scholar

[5] N. Jenkins, J. Ekanayake, & G. Strbac, 'Distributed Generation',. The Institution of Engineering and Technology, Michael Faraday House, Six Hills Way, Stevenage SG1 2AY, UK. 2010. doi: 10. 1049/PBRN001E.

DOI: 10.1017/s0001924000011672

Google Scholar

[6] J. Olamaei, T. Niknam, & M. Nayeripour, 'Effect of Distributed Generators on the Optimal Operation of Distribution Networks',. International Science Index, Vol. 2, p.599–603, (2008).

Google Scholar

[7] M. M. Elnashar, R. El Shatshat, & M. M. A. Salama, 'Optimum siting and sizing of a large distributed generator in a mesh connected system',. Electric Power Systems Research, vol. 80, issue 6, p.690–697, 2010. doi: 10. 1016/j. epsr. 2009. 10. 034.

DOI: 10.1016/j.epsr.2009.10.034

Google Scholar

[8] J. A. P. Lopes, N. Hatziargyriou, J. Mutale, P. Djapic, & N. Jenkins, 'Integrating distributed generation into electric power systems: A review of drivers, challenges and opportunities',. Electric Power Systems Research, vol. 77, issue 9, p.1189.

DOI: 10.1016/j.epsr.2006.08.016

Google Scholar

[9] P. Chiradeja, & R. Ramakumar, 'An Approach to Quantify the Technical Benefits of Distributed Generation', IEEE Transactions on Energy Conversion, vol. 19, issue 4, p.764–773, (2004).

DOI: 10.1109/tec.2004.827704

Google Scholar

[10] H. Kuang, S. Li, & Z. Wu, 'Discussion on advantages and disadvantages of distributed generation connected to the grid',. International Conference on Electrical and Control Engineering, p.170–173, 2011. doi: 10. 1109/ICECENG. 2011. 6057500.

DOI: 10.1109/iceceng.2011.6057500

Google Scholar

[11] T. Ackermann, G. Andersson, & LSöder, 'Distributed generation: a definition. Electric Power Systems Research', vol. 57, issue 3, p.195–204, 2001. doi: 10. 1016/S0378-7796(01)00101-8.

DOI: 10.1016/s0378-7796(01)00101-8

Google Scholar

[12] Y. Wang, F. Ronilaya, X. Chen, & A. P. Roskilly, 'Modelling and simulation of a distributed power generation system with energy storage to meet dynamic household electricity demand',. Applied Thermal Engineering, vol. 50, issue 1, p.523.

DOI: 10.1016/j.applthermaleng.2012.08.014

Google Scholar

[13] F. Ding, P. Li, B. Huang, F. Gao, C. Ding, & C. Wang, 'Modeling and Simulation of Grid-connected Hybrid Photovoltaic / Battery Distributed Generation System',. China International Conference on Electricity Distribution, pp.1-9, (2010).

Google Scholar

[14] B. O. Bilal, V. Sambou, P. A. Ndiaye, C. M. F. Kébé, & M. Ndongo, 'Study of the Influence of Load Profile Variation on the Optimal Sizing of a Standalone Hybrid PV/Wind/Battery/Diesel System',. Energy Procedia, 36, 1265–1275, 2013. doi: 10. 1016/j. egypro. 2013. 07. 143.

DOI: 10.1016/j.egypro.2013.07.143

Google Scholar

[15] J. Dekker, M. Nthontho, S. Chowdhury, & S. P. Chowdhury, 'Economic analysis of PV/diesel hybrid power systems in different climatic zones of South Africa',. International Journal of Electrical Power & Energy Systems, vol. 40, issue 1, p.104.

DOI: 10.1016/j.ijepes.2012.02.010

Google Scholar

[16] P. Nema, R. K. Nema, & S. Rangnekar, 'A current and future state of art development of hybrid energy system using wind and PV-solar: A review',. Renewable and Sustainable Energy Reviews, vol. 13, issue 8, p.2096.

DOI: 10.1016/j.rser.2008.10.006

Google Scholar

[17] R. Dufo-López, & J. L. Bernal-Agustín, 'Multi-objective design of PV–wind–diesel–hydrogen–battery systems',. Renewable Energy, vol. 33, issue 12, p.2559–2572, 2008. doi: 10. 1016/j. renene. 2008. 02. 027.

DOI: 10.1016/j.renene.2008.02.027

Google Scholar

[18] A.A. Bazmi, & G. Zahedi, 'Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A review',. Renewable and Sustainable Energy Reviews, vol. 15, issue 8, p.3480.

DOI: 10.1016/j.rser.2011.05.003

Google Scholar

[19] Y. A. Katsigiannis, & P. S. Georgilakis, 'Optimal sizing of small isolated hybrid power systems using tabu search',. Journal of Optoelectronics and Advanced Materials, vol. 10, issue 5, pp.1241-1245, (2008).

Google Scholar

[20] US Department of Commerce, 'Biomass Energy Data Book. Bureau of Economic Anlysis', 2011. http: /www. bea. gov/iTable/iTable. cfm, ReqID=5&step=1#reqid=5&step=4&isuri=1&411=2004&412=1&401=1&402=1&403=1&413=7VA, 71VA, 711ASVA, 713VA.

Google Scholar

[21] P. Brinckerhoff, 'Thermal Power Station Advice - Reciprocating Engines Study', November, (2009).

Google Scholar

[22] DiracDelta Science and Engineering Encyclopedia. [online] available from http: /www. diracdelta. co. uk/science/source/s/p/specific%20fuel%20consumption/source. html#. VVTFJJM3lAP Accessed (13/05/15).

Google Scholar

[23] M. S. Adaramola, S. S. Paul, & O. M. Oyewola, 'Assessment of decentralized hybrid PV solar-diesel power system for applications in Northern part of Nigeria',. Energy for Sustainable Development, vol. 19, 72–82. doi: 10. 1016/j. esd. 2013. 12. 007.

DOI: 10.1016/j.esd.2013.12.007

Google Scholar