[1]
Lu Y X. Significance and progress of bionics. Journal of Bionics Engineering, 2004, 1(1), pp.1-3.
Google Scholar
[2]
Tong J, Moayad B Z, Ren L Q, Chen B C. Biomimetics in soft terrain machine: a review. International Engineering Journal, 2004, 13, pp.71-86.
Google Scholar
[3]
Niu S C, Li B, Mu Z Z, Yang M, Zhang J Q, Han Z W, Ren L Q. Excellent structure-based multifunction of morpho butterfly wings: a review. Journal of Bionic Engineering, 2015, 12(2), pp.170-189.
DOI: 10.1016/s1672-6529(14)60111-6
Google Scholar
[4]
Ren L Q, Chen D X, Hu J G. Initial analysis on the law of reducing adhesion of soil animals. Transactions of the Chinese Society of Agricultural Engineering, 1990, 6(1), pp.15-20.
Google Scholar
[5]
Gu Y Q, Zhao G, Yu W B, Mou J G, Zheng S H. Modeling for a non-smooth surface processing robot and hot-roll technique tests. Journal of Vibration and Shock, 2015, 34(3), pp.221-228.
Google Scholar
[6]
Zhang C C, Ren L Q, Liu Q P, Feng J B, Qin Y M. Experimental study on bionic dimpled surfaces of bodies of revolution for drag reduction. Acta Aerodynamica Sinica, 2008, 26(1), pp.79-84.
Google Scholar
[7]
Dou Z L, Wang J D, Chen D R. Bionic research on fish scales for drag reduction. Journal of Bionic Engineering, 2012, 9(4), pp.457-464.
DOI: 10.1016/s1672-6529(11)60140-6
Google Scholar
[8]
Cui J, Fu Y B. A numerical study on pressure drop in microchannel flow with different bionic micro-grooved surfaces. Journal of Bionic Engineering, 2012, 9(1), pp.99-109.
DOI: 10.1016/s1672-6529(11)60102-9
Google Scholar
[9]
Han X, Zhang D Y, Li X, Li Y Y. Bio-replicated forming of the biomimetic drag-reducing surfaces in large area based on shark skin. Chinese Science Bulletin, 2008, 53(10), pp.1587-1592.
DOI: 10.1007/s11434-008-0219-3
Google Scholar
[10]
Domínguez J, Aira M, Breinholt J W, Stojanovic M, James S W, Pérez-Losada M. Underground evolution: new roots for the old tree of lumbricid earthworms. Molecular Phylogenetics and Evolution, 2015, 83, pp.7-19.
DOI: 10.1016/j.ympev.2014.10.024
Google Scholar
[11]
Clause J, Forey E, Lortie C J, Lambert A M, Barot S. Non-native earthworms promote plant invasion by ingesting seeds and modifying soil properties. Acta Oecologica, 2015, 64, pp.10-20.
DOI: 10.1016/j.actao.2015.02.004
Google Scholar
[12]
Ren L Q, Han Z W, Li J Q, Tong J. Experimental investigation of bionic rough curved soil cutting blade surface to reduce soil adhesion and friction. Soil and Tillage Research, 2006, 85(1-2), pp.1-12.
DOI: 10.1016/j.still.2004.10.006
Google Scholar
[13]
Ren L Q, Han Z W, Li J Q, Tong J. Effects of non-smooth characteristics on bionic bulldozer blades in resistance reduction against soil. Journal of Terramechanics, 2002, 39(4), pp.221-230.
DOI: 10.1016/s0022-4898(03)00012-0
Google Scholar
[14]
Kim B, Lee G M, Lee P Y, Kim Y, Lee G. An earthworm-like micro robot using shape memory alloy actuator. Sensors and Actuators A: Physical, 2006, 125(2), pp.429-437.
DOI: 10.1016/j.sna.2005.05.004
Google Scholar
[15]
Mezoff S, Papastathis N, Takesian A, Trimmer B A. The biomechanical and neural control of hydrostatic limb movements in Manduca sexta. The Journal of Experimental Biology, 2004, 207, pp.3043-3053.
DOI: 10.1242/jeb.01136
Google Scholar
[16]
Kim S, Laschi C, Trimmer B. Soft robotics: a bioinspired evolution in robotics. Trends in Biotechnology, 2013, 31(5), pp.287-294.
DOI: 10.1016/j.tibtech.2013.03.002
Google Scholar
[17]
Li B, Yan Y Y. Solid desiccant dehumidification techniques inspired from natural electroosmosis phenomena. Journal of Bionic Engineering, 2011, 8(1), pp.90-97.
DOI: 10.1016/s1672-6529(11)60012-7
Google Scholar
[18]
Sun N, Shan H Y, Zhou H, Chen D R. Ren L Q. Adhesion resistance surfaces against clay resulting from biomimetic adaptation. Surface and Coatings Technology, 2012, 206(16), pp.3559-3565.
DOI: 10.1016/j.surfcoat.2012.02.045
Google Scholar
[19]
Yan Y Y, Ren L Q, Li J Q. The electro-osmotic driven flow near an earthworm's body surface and the inspired bionic design in engineering. International Journal of Design & Nature and Ecodynamics, 2006, 1(2), pp.135-145.
DOI: 10.2495/jdn-v1-n2-135-145
Google Scholar
[20]
Gu Y Q, Zhao G, Zheng J X, Li Z Y, Liu W B, Muhammad F K. Experimental and numerical investigation on drag reduction of non-smooth bionic jet surface. Ocean Engineering, 2014, 81, pp.50-57.
DOI: 10.1016/j.oceaneng.2014.02.015
Google Scholar
[21]
Gu Y Q, Mou J G, Zhao G, Wang F. Modeling of drag reduction test system of jet surface and experimental study on drag reduction characteristics. Journal of Huazhong University of Science of Technology: Natural Science Edition, 2014, 42(6), pp.22-27.
Google Scholar
[22]
Benard C, Emmanuel S T. Effects of bionic non-smooth surface on reducing soil resistance to disc ploughing. Science China: Technological Sciences, 2010, 11, pp.2960-2965.
DOI: 10.1007/s11431-010-4128-8
Google Scholar
[23]
Quinn S, Gaughran W. Bionics-an inspiration for intelligent manufacturing and engineering. Robotics and Computer-Integrated Manufacturing, 2010, 26(6), pp.616-621.
DOI: 10.1016/j.rcim.2010.06.021
Google Scholar
[24]
Clause J, Barot S, Richard B, Decaëns T, Forey E. The interactions between soil type and earthworm species determine the properties of earthworm casts. Applied Soil Ecology, 2014, 83, pp.149-158.
DOI: 10.1016/j.apsoil.2013.12.006
Google Scholar
[25]
Liu W T, Fang X S, Chen Y Q. Realizing of SMA actuators for biomimetic earthworm. Chinese Journal of Transcluction Technology, 2005, 18(3), pp.623-626.
Google Scholar
[26]
Domínguez J, Velando A. Sexual selection in earthworms: Mate choice, sperm competition, differential allocation and partner manipulation. Applied Soil Ecology, 2013, 69, pp.21-27.
DOI: 10.1016/j.apsoil.2013.01.010
Google Scholar
[27]
Liu L Y, Zheng G M. General zoology. Beijing: Higher Education Press, (1997).
Google Scholar
[28]
Zhang R, Chen B, Li J Q, Xu S C. DEM simulation of clod crushing by bionic bulldozing plate. Journal of Bionic Engineering, 2008, 5(S1), pp.72-78.
DOI: 10.1016/s1672-6529(08)60075-x
Google Scholar
[29]
Ren L Q, Wang Y P, Li J Q, Sun S Y. Bionic research on flexible nonsmooth surface of typical animals. Transactions of the Chinese Society of Agricultural Engineering, 1996, 12(4), pp.31-36.
Google Scholar
[30]
Liu W T, Menciassi A, Scapellato S, Dario P, Chen Y Q. A biomimetic sensor for a crawling minirobot. Robotics and Autonomous Systems, 2006, 54(7), pp.513-528.
DOI: 10.1016/j.robot.2006.04.004
Google Scholar
[31]
An R Y, Huang W. Observation and research of earthworm movement behavior. Bulletin of Biology, 1995, 30(6), p.42.
Google Scholar
[32]
Molnar L, Pollak E, Skopek Z, Gutt E, Kruk J, Morgan A John, Plytycz B. Immune system participates in brain regeneration and restoration of reproduction in the earthworm Dendrobaena veneta. Developmental & Comparative Immunology, 2015, 52(2), pp.269-279.
DOI: 10.1016/j.dci.2015.04.001
Google Scholar
[33]
Lou J Q, Cao Y Q, Hu Y C, Sun P D. Effects of environmental factors on the respiration rate of tubificidae. Acta Scientiae Circumstantiae, 2013, 33(10), pp.2737-2741.
Google Scholar
[34]
Liu G M, Zou M, Li J Q. Interfacial dynamics simulation between soil and earthworm surface. Journal of Jilin University Engineering and Technology Edition, 2010, 40(6), pp.1609-1613.
Google Scholar
[35]
Gu Y Q, Mou J G, Zheng S H, Zhao G. Experimental analysis on drag reduction characteristics of jet hole diamond arrangement for jet surface. Journal of Huazhong University of Science of Technology: Natural Science Edition, 2015, 43(1), pp.16-20.
Google Scholar
[36]
Gu Y Q, Mou J G, Zheng S H, Zhao G, Ru J, Wang C G. Effect of jet hole arrangement on drag reduction characteristics of jet surface. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10), pp.340-346.
Google Scholar
[37]
Xu Y T, Li J Q, Sun J R, Yang Z J. Research on the surface feather of earthworm and its wettability. Journal of Huazhong Agricultural University, 2005, 24(S1), pp.40-43.
Google Scholar
[38]
Tian L M, Ren L Q, Liu Q P, Han Z W, Jiang X. The mechanism of drag reduction around bodies of revolution using bionic non-smooth surfaces. Journal of Bionic Engineering, 2007, 4(2), pp.109-116.
DOI: 10.1016/s1672-6529(07)60022-5
Google Scholar
[39]
Ding L X, Shi W P, Luo H W. Numerical simulation of viscous flow over non-smooth surfaces. Computers & Mathematics with Applications, 2011, 61(12), pp.3703-3710.
DOI: 10.1016/j.camwa.2010.04.013
Google Scholar
[40]
Zhang C C, Ren L Q, Wang J, Zhang Z Y. Simulation on flow control for drag reduction of revolution body using bionic dimpled surface. Acta Armamentarii, 2009, 30(8), pp.1066-1072.
Google Scholar
[41]
Gu Y Q, Mou J G, Zheng S H, Zhao G, Sun Z Z, Ru J. Characteristics of drag reduction and control behavior of boundary layer on multi-factor coupling of jet surface. Journal of Shanghai Jiaotong University, 2014, 48(9), pp.1334-1340, 1345.
Google Scholar
[42]
Gu Y Q, Mou J G, Dai D S, Zheng S H, Jiang L F, Wu D H, Ren Y, Liu F Q. Characteristics on drag reduction of bionic jet surface based on earthworm's back orifice jet. Acta Physica Sinica, 2015, 64(2), p.024701.
DOI: 10.7498/aps.64.024701
Google Scholar
[43]
Liu G M, Li J Q, Zou M, Li Y W, Tian X M. Feature and the characteristic of sliding resistance reduction of the earthworm's non-smooth surface. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(12), pp.62-65.
Google Scholar
[44]
Wojtaszek J, Kolaczkowska A, Kowalska J, Nowak K, Wilusz T. LTCI, a novel chymotrypsin inhibitor of the potato I family from the earthworm Lumbricus terrestris. Purification, cDNA cloning, and expression. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2006, 143(4), pp.465-472.
DOI: 10.1016/j.cbpb.2005.12.023
Google Scholar
[45]
Sizmur T, Watts M J, Brown G D, Palumbo-Roe B, Hodson M E. Impact of gut passage and mucus secretion by the earthworm lumbricus terrestris on mobility and speciation of arsenic in contaminated soil. Journal of Hazardous Materials, 2011, 197, pp.169-175.
DOI: 10.1016/j.jhazmat.2011.09.071
Google Scholar
[46]
Zhang W X, Chen D M, Zhao C C. Functions of earthworm in ecosystem. Biodiversity Science, 2007, 15(2), pp.142-153.
Google Scholar
[47]
Ren L Q, Tong J, Li J Q, Chen B C. Soil adhesion and biomimetics of soil-engaging components a review. Journal of Agricultural Engineering Research, 2001, 79(3), pp.239-263.
Google Scholar
[48]
Liu Z Y, Yin W, Tao D S, Tian Y. A glimpse of superb tribological designs in nature. Biotribology, 2015, 1-2, pp.11-23.
DOI: 10.1016/j.biotri.2015.02.002
Google Scholar
[49]
Elsheikh E H. Scanning electron microscopic studies of gill arches and rakers in relation to feeding habits of some fresh water fishes. The Journal of Basic & Applied Zoology, 2015 66(3), pp.121-130.
DOI: 10.1016/j.jobaz.2013.07.005
Google Scholar
[50]
Li J Q, Kou B X, Liu G M, Fan W F, Lin L L. Resistance reduction by bionic coupling of the earthworm lubrication function. Science China: Technological Sciences, 2010, 53(11), pp.2989-2995.
DOI: 10.1007/s11431-010-4135-9
Google Scholar
[51]
Chen B C, Ren L Q, Li A Q, Hu Q X. Initial study on the method of collecting the body surface fluid of earthworms. Transactions of the Chinese Society of Agricultural Engineering, 1990, 6(2), pp.7-12.
Google Scholar
[52]
Li A Q, Ren L Q, Chen B C, Cui X X. Constitution and mechanism analysis of reducing soil adhesion for the body surface liquid of earthworms. Transactions of the Chinese Society of Agricultural Engineering, 1990, 6(3), pp.8-14.
Google Scholar
[53]
Liu G M, Zou M, Li J Q. An experimental study on the bionic application of the earthworm body surface self-lubrication [J]. Acta Agriculturae Universitatis Jiangxiensis, 2010, 32(2), pp.378-382.
Google Scholar
[54]
Liu G M, Li J Q, Tian X M, Zou M, Li Y W. Experiment on reduction of soil adhesion force and sliding resistance of earthworm non-smooth surface. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(9), pp.138-143.
Google Scholar
[55]
Zu Y Q, Yan Y Y. Numerical simulation of electroosmotic flow near earthworm surface. Journal of Bionic Engineering, 2006, 3(4), pp.179-186.
DOI: 10.1016/s1672-6529(07)60001-8
Google Scholar
[56]
Ren L Q. Progress in the bionic study on anti-adhesion and resistance reduction of terrain machines. Science China Technological Sciences, 2009, 52(2), pp.273-284.
DOI: 10.1007/s11431-009-0042-3
Google Scholar