A Review of Bionic Technology for Drag Reduction Based on Analysis of Abilities the Earthworm

Article Preview

Abstract:

The earthworm is a common terrestrial animal, its physical structure and morphology characteristics are very distinctive. Through of imitation of the special abilities of earthworms, people can get the material to research on bionic technology, such as the jet, non-smooth surface, etc. It can provide the new design ideas for engineering technology. The study of earthworm body structure and its movement mechanism, can help people to find the drag reduction method in the process of movement. In addition, the earthworm non-smooth body surface, dorsal pore jet, surface lubrication, electroosmosis and its unique moving way form a good drag reduction effect. Therefore, research on earthworm is instructive for the development of bionic technology.

You might also be interested in these eBooks

Info:

Pages:

103-111

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Lu Y X. Significance and progress of bionics. Journal of Bionics Engineering, 2004, 1(1), pp.1-3.

Google Scholar

[2] Tong J, Moayad B Z, Ren L Q, Chen B C. Biomimetics in soft terrain machine: a review. International Engineering Journal, 2004, 13, pp.71-86.

Google Scholar

[3] Niu S C, Li B, Mu Z Z, Yang M, Zhang J Q, Han Z W, Ren L Q. Excellent structure-based multifunction of morpho butterfly wings: a review. Journal of Bionic Engineering, 2015, 12(2), pp.170-189.

DOI: 10.1016/s1672-6529(14)60111-6

Google Scholar

[4] Ren L Q, Chen D X, Hu J G. Initial analysis on the law of reducing adhesion of soil animals. Transactions of the Chinese Society of Agricultural Engineering, 1990, 6(1), pp.15-20.

Google Scholar

[5] Gu Y Q, Zhao G, Yu W B, Mou J G, Zheng S H. Modeling for a non-smooth surface processing robot and hot-roll technique tests. Journal of Vibration and Shock, 2015, 34(3), pp.221-228.

Google Scholar

[6] Zhang C C, Ren L Q, Liu Q P, Feng J B, Qin Y M. Experimental study on bionic dimpled surfaces of bodies of revolution for drag reduction. Acta Aerodynamica Sinica, 2008, 26(1), pp.79-84.

Google Scholar

[7] Dou Z L, Wang J D, Chen D R. Bionic research on fish scales for drag reduction. Journal of Bionic Engineering, 2012, 9(4), pp.457-464.

DOI: 10.1016/s1672-6529(11)60140-6

Google Scholar

[8] Cui J, Fu Y B. A numerical study on pressure drop in microchannel flow with different bionic micro-grooved surfaces. Journal of Bionic Engineering, 2012, 9(1), pp.99-109.

DOI: 10.1016/s1672-6529(11)60102-9

Google Scholar

[9] Han X, Zhang D Y, Li X, Li Y Y. Bio-replicated forming of the biomimetic drag-reducing surfaces in large area based on shark skin. Chinese Science Bulletin, 2008, 53(10), pp.1587-1592.

DOI: 10.1007/s11434-008-0219-3

Google Scholar

[10] Domínguez J, Aira M, Breinholt J W, Stojanovic M, James S W, Pérez-Losada M. Underground evolution: new roots for the old tree of lumbricid earthworms. Molecular Phylogenetics and Evolution, 2015, 83, pp.7-19.

DOI: 10.1016/j.ympev.2014.10.024

Google Scholar

[11] Clause J, Forey E, Lortie C J, Lambert A M, Barot S. Non-native earthworms promote plant invasion by ingesting seeds and modifying soil properties. Acta Oecologica, 2015, 64, pp.10-20.

DOI: 10.1016/j.actao.2015.02.004

Google Scholar

[12] Ren L Q, Han Z W, Li J Q, Tong J. Experimental investigation of bionic rough curved soil cutting blade surface to reduce soil adhesion and friction. Soil and Tillage Research, 2006, 85(1-2), pp.1-12.

DOI: 10.1016/j.still.2004.10.006

Google Scholar

[13] Ren L Q, Han Z W, Li J Q, Tong J. Effects of non-smooth characteristics on bionic bulldozer blades in resistance reduction against soil. Journal of Terramechanics, 2002, 39(4), pp.221-230.

DOI: 10.1016/s0022-4898(03)00012-0

Google Scholar

[14] Kim B, Lee G M, Lee P Y, Kim Y, Lee G. An earthworm-like micro robot using shape memory alloy actuator. Sensors and Actuators A: Physical, 2006, 125(2), pp.429-437.

DOI: 10.1016/j.sna.2005.05.004

Google Scholar

[15] Mezoff S, Papastathis N, Takesian A, Trimmer B A. The biomechanical and neural control of hydrostatic limb movements in Manduca sexta. The Journal of Experimental Biology, 2004, 207, pp.3043-3053.

DOI: 10.1242/jeb.01136

Google Scholar

[16] Kim S, Laschi C, Trimmer B. Soft robotics: a bioinspired evolution in robotics. Trends in Biotechnology, 2013, 31(5), pp.287-294.

DOI: 10.1016/j.tibtech.2013.03.002

Google Scholar

[17] Li B, Yan Y Y. Solid desiccant dehumidification techniques inspired from natural electroosmosis phenomena. Journal of Bionic Engineering, 2011, 8(1), pp.90-97.

DOI: 10.1016/s1672-6529(11)60012-7

Google Scholar

[18] Sun N, Shan H Y, Zhou H, Chen D R. Ren L Q. Adhesion resistance surfaces against clay resulting from biomimetic adaptation. Surface and Coatings Technology, 2012, 206(16), pp.3559-3565.

DOI: 10.1016/j.surfcoat.2012.02.045

Google Scholar

[19] Yan Y Y, Ren L Q, Li J Q. The electro-osmotic driven flow near an earthworm's body surface and the inspired bionic design in engineering. International Journal of Design & Nature and Ecodynamics, 2006, 1(2), pp.135-145.

DOI: 10.2495/jdn-v1-n2-135-145

Google Scholar

[20] Gu Y Q, Zhao G, Zheng J X, Li Z Y, Liu W B, Muhammad F K. Experimental and numerical investigation on drag reduction of non-smooth bionic jet surface. Ocean Engineering, 2014, 81, pp.50-57.

DOI: 10.1016/j.oceaneng.2014.02.015

Google Scholar

[21] Gu Y Q, Mou J G, Zhao G, Wang F. Modeling of drag reduction test system of jet surface and experimental study on drag reduction characteristics. Journal of Huazhong University of Science of Technology: Natural Science Edition, 2014, 42(6), pp.22-27.

Google Scholar

[22] Benard C, Emmanuel S T. Effects of bionic non-smooth surface on reducing soil resistance to disc ploughing. Science China: Technological Sciences, 2010, 11, pp.2960-2965.

DOI: 10.1007/s11431-010-4128-8

Google Scholar

[23] Quinn S, Gaughran W. Bionics-an inspiration for intelligent manufacturing and engineering. Robotics and Computer-Integrated Manufacturing, 2010, 26(6), pp.616-621.

DOI: 10.1016/j.rcim.2010.06.021

Google Scholar

[24] Clause J, Barot S, Richard B, Decaëns T, Forey E. The interactions between soil type and earthworm species determine the properties of earthworm casts. Applied Soil Ecology, 2014, 83, pp.149-158.

DOI: 10.1016/j.apsoil.2013.12.006

Google Scholar

[25] Liu W T, Fang X S, Chen Y Q. Realizing of SMA actuators for biomimetic earthworm. Chinese Journal of Transcluction Technology, 2005, 18(3), pp.623-626.

Google Scholar

[26] Domínguez J, Velando A. Sexual selection in earthworms: Mate choice, sperm competition, differential allocation and partner manipulation. Applied Soil Ecology, 2013, 69, pp.21-27.

DOI: 10.1016/j.apsoil.2013.01.010

Google Scholar

[27] Liu L Y, Zheng G M. General zoology. Beijing: Higher Education Press, (1997).

Google Scholar

[28] Zhang R, Chen B, Li J Q, Xu S C. DEM simulation of clod crushing by bionic bulldozing plate. Journal of Bionic Engineering, 2008, 5(S1), pp.72-78.

DOI: 10.1016/s1672-6529(08)60075-x

Google Scholar

[29] Ren L Q, Wang Y P, Li J Q, Sun S Y. Bionic research on flexible nonsmooth surface of typical animals. Transactions of the Chinese Society of Agricultural Engineering, 1996, 12(4), pp.31-36.

Google Scholar

[30] Liu W T, Menciassi A, Scapellato S, Dario P, Chen Y Q. A biomimetic sensor for a crawling minirobot. Robotics and Autonomous Systems, 2006, 54(7), pp.513-528.

DOI: 10.1016/j.robot.2006.04.004

Google Scholar

[31] An R Y, Huang W. Observation and research of earthworm movement behavior. Bulletin of Biology, 1995, 30(6), p.42.

Google Scholar

[32] Molnar L, Pollak E, Skopek Z, Gutt E, Kruk J, Morgan A John, Plytycz B. Immune system participates in brain regeneration and restoration of reproduction in the earthworm Dendrobaena veneta. Developmental & Comparative Immunology, 2015, 52(2), pp.269-279.

DOI: 10.1016/j.dci.2015.04.001

Google Scholar

[33] Lou J Q, Cao Y Q, Hu Y C, Sun P D. Effects of environmental factors on the respiration rate of tubificidae. Acta Scientiae Circumstantiae, 2013, 33(10), pp.2737-2741.

Google Scholar

[34] Liu G M, Zou M, Li J Q. Interfacial dynamics simulation between soil and earthworm surface. Journal of Jilin University Engineering and Technology Edition, 2010, 40(6), pp.1609-1613.

Google Scholar

[35] Gu Y Q, Mou J G, Zheng S H, Zhao G. Experimental analysis on drag reduction characteristics of jet hole diamond arrangement for jet surface. Journal of Huazhong University of Science of Technology: Natural Science Edition, 2015, 43(1), pp.16-20.

Google Scholar

[36] Gu Y Q, Mou J G, Zheng S H, Zhao G, Ru J, Wang C G. Effect of jet hole arrangement on drag reduction characteristics of jet surface. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10), pp.340-346.

Google Scholar

[37] Xu Y T, Li J Q, Sun J R, Yang Z J. Research on the surface feather of earthworm and its wettability. Journal of Huazhong Agricultural University, 2005, 24(S1), pp.40-43.

Google Scholar

[38] Tian L M, Ren L Q, Liu Q P, Han Z W, Jiang X. The mechanism of drag reduction around bodies of revolution using bionic non-smooth surfaces. Journal of Bionic Engineering, 2007, 4(2), pp.109-116.

DOI: 10.1016/s1672-6529(07)60022-5

Google Scholar

[39] Ding L X, Shi W P, Luo H W. Numerical simulation of viscous flow over non-smooth surfaces. Computers & Mathematics with Applications, 2011, 61(12), pp.3703-3710.

DOI: 10.1016/j.camwa.2010.04.013

Google Scholar

[40] Zhang C C, Ren L Q, Wang J, Zhang Z Y. Simulation on flow control for drag reduction of revolution body using bionic dimpled surface. Acta Armamentarii, 2009, 30(8), pp.1066-1072.

Google Scholar

[41] Gu Y Q, Mou J G, Zheng S H, Zhao G, Sun Z Z, Ru J. Characteristics of drag reduction and control behavior of boundary layer on multi-factor coupling of jet surface. Journal of Shanghai Jiaotong University, 2014, 48(9), pp.1334-1340, 1345.

Google Scholar

[42] Gu Y Q, Mou J G, Dai D S, Zheng S H, Jiang L F, Wu D H, Ren Y, Liu F Q. Characteristics on drag reduction of bionic jet surface based on earthworm's back orifice jet. Acta Physica Sinica, 2015, 64(2), p.024701.

DOI: 10.7498/aps.64.024701

Google Scholar

[43] Liu G M, Li J Q, Zou M, Li Y W, Tian X M. Feature and the characteristic of sliding resistance reduction of the earthworm's non-smooth surface. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(12), pp.62-65.

Google Scholar

[44] Wojtaszek J, Kolaczkowska A, Kowalska J, Nowak K, Wilusz T. LTCI, a novel chymotrypsin inhibitor of the potato I family from the earthworm Lumbricus terrestris. Purification, cDNA cloning, and expression. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2006, 143(4), pp.465-472.

DOI: 10.1016/j.cbpb.2005.12.023

Google Scholar

[45] Sizmur T, Watts M J, Brown G D, Palumbo-Roe B, Hodson M E. Impact of gut passage and mucus secretion by the earthworm lumbricus terrestris on mobility and speciation of arsenic in contaminated soil. Journal of Hazardous Materials, 2011, 197, pp.169-175.

DOI: 10.1016/j.jhazmat.2011.09.071

Google Scholar

[46] Zhang W X, Chen D M, Zhao C C. Functions of earthworm in ecosystem. Biodiversity Science, 2007, 15(2), pp.142-153.

Google Scholar

[47] Ren L Q, Tong J, Li J Q, Chen B C. Soil adhesion and biomimetics of soil-engaging components a review. Journal of Agricultural Engineering Research, 2001, 79(3), pp.239-263.

Google Scholar

[48] Liu Z Y, Yin W, Tao D S, Tian Y. A glimpse of superb tribological designs in nature. Biotribology, 2015, 1-2, pp.11-23.

DOI: 10.1016/j.biotri.2015.02.002

Google Scholar

[49] Elsheikh E H. Scanning electron microscopic studies of gill arches and rakers in relation to feeding habits of some fresh water fishes. The Journal of Basic & Applied Zoology, 2015 66(3), pp.121-130.

DOI: 10.1016/j.jobaz.2013.07.005

Google Scholar

[50] Li J Q, Kou B X, Liu G M, Fan W F, Lin L L. Resistance reduction by bionic coupling of the earthworm lubrication function. Science China: Technological Sciences, 2010, 53(11), pp.2989-2995.

DOI: 10.1007/s11431-010-4135-9

Google Scholar

[51] Chen B C, Ren L Q, Li A Q, Hu Q X. Initial study on the method of collecting the body surface fluid of earthworms. Transactions of the Chinese Society of Agricultural Engineering, 1990, 6(2), pp.7-12.

Google Scholar

[52] Li A Q, Ren L Q, Chen B C, Cui X X. Constitution and mechanism analysis of reducing soil adhesion for the body surface liquid of earthworms. Transactions of the Chinese Society of Agricultural Engineering, 1990, 6(3), pp.8-14.

Google Scholar

[53] Liu G M, Zou M, Li J Q. An experimental study on the bionic application of the earthworm body surface self-lubrication [J]. Acta Agriculturae Universitatis Jiangxiensis, 2010, 32(2), pp.378-382.

Google Scholar

[54] Liu G M, Li J Q, Tian X M, Zou M, Li Y W. Experiment on reduction of soil adhesion force and sliding resistance of earthworm non-smooth surface. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(9), pp.138-143.

Google Scholar

[55] Zu Y Q, Yan Y Y. Numerical simulation of electroosmotic flow near earthworm surface. Journal of Bionic Engineering, 2006, 3(4), pp.179-186.

DOI: 10.1016/s1672-6529(07)60001-8

Google Scholar

[56] Ren L Q. Progress in the bionic study on anti-adhesion and resistance reduction of terrain machines. Science China Technological Sciences, 2009, 52(2), pp.273-284.

DOI: 10.1007/s11431-009-0042-3

Google Scholar