Evaluating the Quality of Compression in Very High Resolution Satellite Images Using Different Compression Methods

Article Preview

Abstract:

The rapid growth of remote sensing technology has a great advantage in producing high resolution images which are huge in data volume. Due to the huge volume it is tedious to store and transmit the data. In order to overcome this, a good compression algorithm should be used to compress the data before storing are transmitting. In this paper we have chosen seven different very high resolution satellite images namely Worldview 3, Worldview 2, GeoEye-1, Worldview 1, Pleiades, Quick Bird and IKONOS they are compressed using three different compression methods JPEG, SPIHT and JPEG2000. The Mean square Error, Signal to noise Ratio and Peak Signal to Noise Ratio are calculated to evaluate the quality of the compression methods in very high resolution satellite images.

You might also be interested in these eBooks

Info:

Pages:

91-102

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Cox, I. J., Kilian, J., Leighton, F. T., & Shamoon, T. (1997). Secure spread spectrum watermarking for multimedia. Image Processing, IEEE Transactions on, 6(12), 1673-1687.

DOI: 10.1109/83.650120

Google Scholar

[2] Sanjith, S., Ganesan, R. (2014). A review on hyperspectral image compression. In Control, Instrumentation, Communication and Computational Technologies (ICCICCT), 2014 International Conference on 1159-1163.

DOI: 10.1109/iccicct.2014.6993136

Google Scholar

[3] Wang, Z., & Bovik, A. C. (2002). A universal image quality index. Signal Processing Letters, IEEE, 9(3), 81-84.

DOI: 10.1109/97.995823

Google Scholar

[4] Du, Q., & Fowler, J. E. (2007). Hyperspectral image compression using JPEG2000 and principal component analysis. Geoscience and Remote Sensing Letters, IEEE, 4(2), 201-205.

DOI: 10.1109/lgrs.2006.888109

Google Scholar

[5] Turaga, D. S., Chen, Y., & Caviedes, J. (2004). No reference PSNR estimation for compressed pictures. Signal Processing: Image Communication, 19(2), 173-184.

DOI: 10.1016/j.image.2003.09.001

Google Scholar

[6] Sanjith, S., Ganesan, R., & Isaac, R. S. (2015). Experimental Analysis of Compacted Satellite Image Quality Using Different Compression Methods. Advanced Science, Engineering and Medicine, 7(3), 227-233.

DOI: 10.1166/asem.2015.1673

Google Scholar

[7] Geoimage, Established in 1988. http: /www. geoimage. com. au/satellite. Accessed 20 July (2015).

Google Scholar

[8] Kruse, F. A., & Perry, S. L. (2013). Mineral mapping using simulated Worldview-3 short-wave-infrared imagery. Remote Sensing, 5(6), 2688-2703.

DOI: 10.3390/rs5062688

Google Scholar

[9] Pu, R., & Landry, S. (2012). A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species. Remote Sensing of Environment, 124, 516-533.

DOI: 10.1016/j.rse.2012.06.011

Google Scholar

[10] Fraser, C., & Ravanbakhsh, M. (2009). Georeferencing performance of GEOEYE- 1. Photogrammetric engineering & remote sensing, 75(6), 634-638.

Google Scholar

[11] Capaldo, P., Crespi, M., Fratarcangeli, F., Nascetti, A., & Pieralice, F. (2012). DSM generation from high resolution imagery: applications with WorldView-1 and Geoeye-1. Italian Journal of Remote Sensing, 44(1), 41-53.

DOI: 10.5721/itjrs20124414

Google Scholar

[12] Dial, G., Bowen, H., Gerlach, F., Grodecki, J., & Oleszczuk, R. (2003). IKONOS satellite, imagery, and products. Remote sensing of Environment, 88(1), 23-36.

DOI: 10.1016/j.rse.2003.08.014

Google Scholar

[13] Delaunay, X., Chabert, M., Charvillat, V., & Morin, G. (2010). Satellite image compression by post-transforms in the wavelet domain. Signal Processing, 90(2), 599- 610.

DOI: 10.1016/j.sigpro.2009.07.024

Google Scholar

[14] Stow, D., Lopez, A., Lippitt, C., Hinton, S., & Weeks, J. (2007). Object‐based classification of residential land use within Accra, Ghana based on QuickBird satellite data. International Journal of Remote Sensing, 28(22), 5167-5173.

DOI: 10.1080/01431160701604703

Google Scholar

[15] Wallace, G. K. (1991). The JPEG still picture compression standard. Communications of the ACM, 34(4), 30-44.

DOI: 10.1145/103085.103089

Google Scholar

[16] Dragotti, P. L., Poggi, G., & Ragozini, A. R. (2000). Compression of multispectral images by three-dimensional SPIHT algorithm. Geoscience and Remote Sensing, IEEE Transactions on, 38(1), 416-428.

DOI: 10.1109/36.823937

Google Scholar

[17] Skodras, A., Christopoulos, C., & Ebrahimi, T. (2001). The JPEG 2000 still image compression standard. Signal Processing Magazine, IEEE, 18(5), 36-58.

DOI: 10.1109/79.952804

Google Scholar

[18] Sanjith S, Ganesan R (2015) Performance evaluation of basic compression methods for different satellite Imagery. Indian Journal of Science and Technology. Accepted Manuscript.

Google Scholar