[1]
BETP. (2012, 14/02/ 2016). Hydraulic Turbines. Available: http: /www. betp. net/2012/01/pelton-wheelturbine.
Google Scholar
[2]
P. H. -Y. Bryan, Design of a Low Head Pico Hydro Turbine for Rural Electrification in Cameroon, Engineering and International Development, The University of Guelph, Guelph, Ontario, Canada, (2012).
Google Scholar
[3]
W. S. Ebhota, A. C. Eloka-Eboka, and F. L. Inambao, Energy sustainability through domestication of energy technologies in third world countries in Africa, " in Industrial and Commercial Use of Energy (ICUE), 2014 International Conference on the "Energy efficiency in buildings,. 2014, pp.1-7.
DOI: 10.1109/icue.2014.6904197
Google Scholar
[4]
H. Liu, D. Masera, and L. Esser, World Hydropower Development Report 2013., United Nation Industrial Development Organisation (UNIDO) and Intertional Centre on Small Hydropower (ICSHP), (2013).
Google Scholar
[5]
G. Loice and M. Ignatio, Efficiency Improvement of Pelton Wheel and Crossflow Turbines in Micro-Hydro Power Plants: Case Study, International Journal of Engineering and Computer Science vol. 2, pp.416-432, (2013).
Google Scholar
[6]
B. William, S. Vasu, and S. Manjot, Green Mechatronics Project: Pelton Wheel Driven Micro-Hydro Plant, Mechanical Engineering University of Ottawa, (2010).
Google Scholar
[7]
R. N. Mbiu1, S. M. Maranga, and H. Ndiritu, Performance of Aluminium A356 Alloy Based Buckets Towards Bending Forces on Pelton Turbines, in Sustainable Research and Innovation (SRI) Conference, Nairobi, Kenya, 2015, pp.134-138.
Google Scholar
[8]
I. A. K. M. Khabirul, B. Sahnewaz, and A. C. Farooque, Advanced Composite Pelton Wheel Design and Study its Performance for Pico/Micro Hydro Power Plant Application, International Journal of Engineering and Innovative Technology (IJEIT), vol. 2, pp.126-132, (2013).
Google Scholar
[9]
N. I. R. Nava and T. S. Prasad, Design and Static Analysis of Pelton Turbine Bucket , International Journal of Science Technology and Management, vol. 4, pp.19-25, (2015).
Google Scholar
[10]
D. V. Khera and R. S. Chadhawork, Silt Erosion. Trouble for Turbines, International Water Power and Dam Construction vol. 53, pp.22-3, (2001).
Google Scholar
[11]
M. K. Padhy and R. P. Saini, Effect of Size and Concentration of Silt Particles on Erosion of Pelton Turbine Buckets, Energy vol. 34, pp.1477-1483, (2009).
DOI: 10.1016/j.energy.2009.06.015
Google Scholar
[12]
A. Negi, R. S. Virendra, and S. S. Samant, Effect of Cr2O3 and TiN Coatings on 13Cr-4Ni Turbine Blade Material by HVOF Process: A Review, International Journal of Water & Hydro Constructions – IJWHC vol. 1 (2014).
Google Scholar
[13]
T. R. Bajracharya, B. Acharya, J. C. B., R. P. Saini, and O. G. Dahlhaug, Sand Erosion of Pelton Turbine Nozzles and Buckets: A Case Study of Chilime Hydropower Plant, Wear vol. 264, pp.177-184, (2008).
DOI: 10.1016/j.wear.2007.02.021
Google Scholar
[14]
ASM, Corrosion: Understanding the Basics. ASM International, Materials Park, Ohio American Technical Publishers Ltd, (2000).
Google Scholar
[15]
G. V. Akimov, Theory and Methods of Studying Metal Corrosion. Moscow AN SSSR, (1945).
Google Scholar
[16]
V. S. Sinyavskii and V. D. Kalinin, Marine Corrosion and Protection of Aluminum Alloys According to their Composition and Structure, Protection of Metals, vol. 41, pp.317-328, (2005).
DOI: 10.1007/s11124-005-0046-8
Google Scholar
[17]
V. S. Sinyavskii, V. D. Val'kov, and V. D. Kalinin, Corrosion and Protection of Aluminum Alloys Moscow: Metallurgiya, (1986).
Google Scholar
[18]
M. korroziya, Handbook on Marine Corrosion Shumakher, M.M. ed. Moscow: Metallurgiya, (1983).
Google Scholar
[19]
H. P. Godard, The Corrosion of Light Metals: Aluminum, John Wiley, Inc, vol. Y-L-S, p.218, (1967).
Google Scholar
[20]
H. Torabian, J. P. Pathak, and S. N. Tiwari, Wear Characteristics of Al-Si Alloys, Wear, vol. 172, pp.49-58, (1994).
DOI: 10.1016/0043-1648(94)90298-4
Google Scholar
[21]
P. K. Rohatgi and B. C. Pai, Effect of Microstructure and Mechanical Properties on the Seizure Resistance of Cast Aluminium Alloys., Wear, vol. 28, pp.353-367, (1974).
DOI: 10.1016/0043-1648(74)90192-6
Google Scholar
[22]
A. C. Vieira, P. D. Sequeira, J. R. Gomes, and L. A. Rocha, Dry Sliding Wear of Al Alloy/SiCp Functionally Graded Composites: Influence of Processing Conditions, Wear vol. 267 p.585–592., (2009).
DOI: 10.1016/j.wear.2009.01.041
Google Scholar
[23]
Casting Metal handbook, 9th ed. vol. 15: ASM International, (1997).
Google Scholar
[24]
G. Chirita, I. Stefanescu, D. Cruz, D. Soares, and F. S. Silva, Sensitivity of Different Al–Si Alloys to Centrifugal Casting Effect, Materials and Design vol. 31 pp.2867-2877, (2010).
DOI: 10.1016/j.matdes.2009.12.045
Google Scholar
[25]
SAAJ. (2014, 23/03/2016). Die Steel Grade OHNS. Available: http: /saajsteel. com/?page_id=1055.
Google Scholar
[26]
D. L. Zhang, L. Zheng, and D. H. StJohn, Effect of Solution Treatment Temperature on Tensile Properties of AI-7Si-0. 3 (wt-%) Alloy, Materials Science and Technology, vol. 14, pp.619-625, (1998).
DOI: 10.1179/mst.1998.14.7.619
Google Scholar
[27]
S. Shivkumar, S. Ricci, B. Steenhoff, and D. Apelian, An Experimental Study to Optimize the Heat Treatment of A356 alloy , American Foundry Society Transaction, vol. 97, pp.791-810., (1989).
Google Scholar
[28]
M. Drouzy, S. Jacob, and M. Richard, Interpretation of Tensile Results by Means of Quality Index and Probable Yield Strength, AFS International Cast Metals Research Journal, vol. 5, pp.43-50, (1980).
Google Scholar
[29]
K. G. Basavakumar, P. G. Mukunda, and M. Chakraborthy, Impact Toughness in Al -12Si and Al-12Si-3Cu Cast Alloys- Part - I: Effect of Process Variables And Microstructure, International Journal of Impact Engineering, vol. 25, pp.199-205, (2008).
DOI: 10.1016/j.ijimpeng.2007.03.002
Google Scholar
[30]
T. M. Chandrashekharaiah and S. A. Kori, Effect of Grain Refinement and Modification on the Dry Sliding Wear Behaviour of Eutectic Al-Si Alloys, Tribology International, vol. 42, pp.59-65, (2009).
DOI: 10.1016/j.triboint.2008.05.012
Google Scholar
[31]
F. H. P. Juan, Heat Treatment and Precipitation in A356 Aluminum Alloy, Doctor of Philosophy, Mining, Metals and Materials Engineering, McGill University, Montreal, Canada, (2003).
Google Scholar
[32]
L. Heusler and W. Schneider, Recent Investigations of Influence of P on Na and Sr Modification of Al-Si Alloys , American Foundry Society Transaction, vol. 97, pp.915-921, (1997).
Google Scholar
[33]
B. C. a. J. E. Gruzleski:, Mechanical Properties of A356. 0 Alloys Modified with Pure Strontium , American Foundry Society Transaction, pp.453-464, (1982).
Google Scholar
[34]
B. P. Vikramkumar, Investigations on the Properties of Al-Si Alloy Synthesized By Centrifugal Casting Process, Metallurgical Engineering, Ganpat Uniiversiity, Kherva, India, (2014).
Google Scholar
[35]
A. S. Rao, S. T. Mahantesh, and S. R. Shrikantha, Understanding Melt Flow Behavior for Al-Si Alloys Processed Through Vertical Centrifugal Casting, Materials and Manufacturing Processes, vol. 30, pp.1305-1311, (2015).
DOI: 10.1080/10426914.2015.1019093
Google Scholar
[36]
M. Ishak, A. Amir, and A. Hadi, Effect of Solution Treatment Temperature on Microstructure and Mechanical Properties of A356 Alloy, presented at the International Conference on Mechanical Engineering Research (ICMER2013), Bukit Gambang Resort City, Kuantan, Pahang, Malaysia, (2013).
Google Scholar
[37]
B. A. Dewhirst, Optimization of the Heat Treatment of Semi Solid Processed A356 Aluminum Alloy, Masters Worcester Polytechnic Institute, (2005).
Google Scholar
[38]
M. Rosso and G. M. Actis, Optimization of Heat Treatment Cycles for Automotive Parts Produced By Rheocasting Process., Solid State Phenom. , vol. 116-117, pp.505-8, (2006).
DOI: 10.4028/www.scientific.net/ssp.116-117.505
Google Scholar
[39]
W. S. Miller, L. Zhuang, J. Bottema, A. J. Wittebrood, P. De Smet, A. Haszler, et al., Recent Development in Aluminium Alloys for the Automotive Industry, Material Science Engineering A, vol. 280, pp.37-49, (2000).
DOI: 10.1016/s0921-5093(99)00653-x
Google Scholar