Multi Response Optimization by Using the Hybrid Technique in Electro Discharge Machining of AISI 304

Article Preview

Abstract:

Electro discharge machining (EDM) is most popular non-conventional electro-thermal machining process where electrical energy is used to generate a spark and thermal energy used to remove material from the workpiece. The primary goal of EDM is getting more material removal rate (MRR) with lower tool wear rate (TWR). For this investigation, machining parameters like peak current, pulse on time, gap voltage and duty cycle are considered as process parameter, and material removal rate (MRR) and tool wear rate (TWR) are considered as response. AISI 304 stainless steel and tungsten carbide are used as work material and tool material respectively. Taguchi L27 orthogonal array has been applied for designing the experiment. A hybrid optimization technique like desirability in combination with grey relational analysis (GRA) has been performed to get the optimum level of the control parameter for getting higher MRR and lower TWR. Analysis of variance (ANOVA) is performed for the statistical analysis. These results show that peak current is the most significant parameter for MRR and TWR. The optimal parameter setting for maximum MRR and minimum TWR has obtained by desirability coupled with Grey relational analysis.

You might also be interested in these eBooks

Info:

Pages:

68-75

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.J. Luis, I. Puertas, G. Villa, Material removal rate and electrode wear study on the EDM of silicon carbide, J. Mater. Process. Tech. 164(16) (2005) 889- 896.

DOI: 10.1016/j.jmatprotec.2005.02.045

Google Scholar

[2] P. R. Kubade, An Experimental Investigation of Electrode Wear Rate (EWR), Material Removal Rate (MRR) and Radial Overcut (ROC) in EDM of High Carbon-High Chromium Steel (AISI D3), Int. J. Eng. Adv. Tech. (IJEAT). 1(5) (2012) 135-140.

Google Scholar

[3] S. Dewangan, C.K. Biswas, Optimization of machining parameters using grey relation analysis for EDM with impulse flushing, Int. J. Mechatron. Manuf. Syst. 6(2), (2013)144-158.

DOI: 10.1504/ijmms.2013.053826

Google Scholar

[4] A. Iqbal, A.K.M., A.A. Khan, Influence of Process Parameters on Electrical Discharge Machined Job Surface Integrity, Am. J. Eng. Appl. Sci. 3(2) (2010) 396-402.

DOI: 10.3844/ajeassp.2010.396.402

Google Scholar

[5] P. Goninan, S.S. Joshi, Experimental characterization of material removal in dry electrical discharge drilling, Int. J. Mach. Tool. Manu. 50 (2010) 431–443.

Google Scholar

[6] S. Choudhary, K. Kant, P. Saini, Analysis of MRR and SR with Different Electrode for SS 316 on Die-Sinking EDM using Taguchi Technique, Global J. Res. Eng. Mech. Mech. Eng, 13(3) (2013) 14-21.

Google Scholar

[7] H. Sidhom, F. Ghanem, T. Amadou, G. Gonzalez, C. Braham, Effect of electro discharge machining (EDM) on the AISI316L SS white layer microstructure and corrosion resistance, Int. J. Adv. Manuf. Tech. 65 (2013) 141–153.

DOI: 10.1007/s00170-012-4156-6

Google Scholar

[8] V. P. Pandey, R.N. Mall, Analysis of Material Removal Rate of AISI 304 SS in EDM Process, Int. J. Sci. Res. Dev. 2(7), (2014) 209-212.

Google Scholar

[9] T. Roy, R.K. Dutta, Study of the Effect of EDM Parameters based on Tool Overcut using Stainless Steel (SS 304 Grade), Int. J. Eng. Trends Technol. (IJETT), 13(5) (2014) 196-199.

DOI: 10.14445/22315381/ijett-v13p241

Google Scholar

[10] H. S. Lu, C. K. Chang, N. C. Hwang, C.T. Chung, Grey relational analysis coupled with principal component analysis for optimization design of the cutting parameters in high-speed end milling, J. Mater. Process. 209 (2009) 3808–3817.

DOI: 10.1016/j.jmatprotec.2008.08.030

Google Scholar

[11] G. Nandi, S. Dutta, A. Bandopadhyay, P. K. Pal, Analyses of hybrid Taguchi methods for optimization of submerged arc weld, Joining Processes: Challenges for Quality, Design, and Development, March 5-6, 2010 National Institute of Technology, Agartala, Tripura, 1-21.

Google Scholar

[12] K. P. Maity, D.K. Bagal, Effect of process parameters on cut quality of stainless steel on plasma arc cutting using hybrid approach, Int. J. Adv. Manuf. Tech. (2014).

DOI: 10.1007/s00170-014-6552-6

Google Scholar

[13] R. Chakravorty, S. K. Gauri, S. Chakraborty, A modified principal component analysis-based utility theory approach for optimization of correlated responses of EDM process, Int. J. Eng. Sci. Technol. 4 (2) (2012) 34-45.

DOI: 10.4314/ijest.v4i2.3

Google Scholar

[14] P. Narender Singh, K. Raghukandan, B.C. Pai, Optimization by grey relational analysis of EDM parameters on machining Al-10%SiCp composites, J. Mater. Process. Technol. 155 (2004) 1658-1661.

DOI: 10.1016/j.jmatprotec.2004.04.322

Google Scholar

[15] R. Karthikeyan, S. Raju, R.S. Magazine, Optimization of electrical discharge machining characteristics of SiCp/LM25 Al composites using Goal programming, J. of Mater. Sci. Tech. 17 (2001) 357-360.

Google Scholar

[16] C.L. Lin, J.L. Lin, T.C. Ko, Optimization of the EDM process based on the orthogonal array with fuzzy logic and grey relational analysis method, Int. J. Adv. Manuf. Tech. 19 (2002) 271-277.

DOI: 10.1007/s001700200034

Google Scholar

[17] R. Ramanujam, L.M. Maiyar, K. Venkatesanans, M. Vasan, Multi-Response Optimization Using ANOVA And Desirability Function Analysis: A Case Study In End Milling Of Inconel Alloy, ARPN J. Eng. Applied Sci. 9 (3) (2014) 457-463.

Google Scholar

[18] L.M. Maiyar, R. Ramanujam, K. Venkatesan, J. Jerald, Optimization of Machining Parameters for End Milling of Inconel 718 Super Alloy Using Taguchi Based Grey Relational Analysis, Procedia Eng. 64 (2013)1276 – 1282.

DOI: 10.1016/j.proeng.2013.09.208

Google Scholar

[19] M. Durairaj, D. Sudharsun, N. Swamynathan, Analysis of Process Parameters in Wire EDM with Stainless Steel using Single Objective Taguchi Method and Multi-Objective Grey Relational Grade, Procedia Eng. 64 (2013) 868 – 877.

DOI: 10.1016/j.proeng.2013.09.163

Google Scholar