The Transverse Shear Effect of a New Plate Bending Finite Element Based on the Strain Approach

Article Preview

Abstract:

In this paper, we present a comparative study of the transverse shear effect on the plate bending. The element used is a rectangular finite element called SBRPK (Strain Based Rectangular Plate-Kirchhoff Theory-), it used for the numerical analysis of thin plate bending, and it based on the strain approach. This element has four nodes and three degrees of freedom per node (w, θx, θy). Through the numerical applications with different loading cases and boundary conditions; the numerical results obtained are in close agreement with the analytical solution.

You might also be interested in these eBooks

Info:

Pages:

1-10

Citation:

Online since:

March 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Abderrahmani S, Maalem T and Hamadi D(2016); On Improved Thin Plate Bending Rectangular Finite Element Based On The Strain Approach, International Journal of Engineering Research in Africa, Vol 27, pp.76-86.

DOI: 10.4028/www.scientific.net/jera.27.76

Google Scholar

[2] Belarbi M.T. et Charif A(1999)., Développement d'un nouvel élément hexaédrique simple basé sur le modèle en déformation pour l'étude des plaques minces et épaisses,, Revue Européenne des éléments Finis, Vol.8, N0 2, p.135157.

DOI: 10.1080/12506559.1999.10511361

Google Scholar

[3] Belounar L et Guenfoud M (2005),"A New Rectangular finite element based on the strain approach for plate bending», Thin Walled Structures 43; 4763.

DOI: 10.1016/j.tws.2004.08.003

Google Scholar

[4] François Frey(1998), Traité de génie civil de l'école polytechnique fédérale de Lausane – Volume 3– Analyse des structures et milieux continus – mécanique des solides, Presses polytechniques et universitaires romandes CH-1015.

DOI: 10.1080/03043799508928298

Google Scholar

[5] HAMADI D., DERBANE S. and OUNIS A(2012)., "Formulation of A new plate bending finite element based on the strain approach ,international conference on applied and computational mathematics October , Ankara.

Google Scholar

[6] Love A.E.H. (1988) On the small free vibrations and deformations of elastic shells. Philosophical trans of the Royal Society (London), Vol. s´erie A, N0 17 p.491–549.

Google Scholar

[7] Mindlin R. D.(1951) Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. Journal of Applied Mechanics, Vol. 18 p.31–38.

DOI: 10.1115/1.4010217

Google Scholar

[8] Melosh, R.J.(1961) A stiffness matrix for the analysis of thin plates in bending, J. Aero-Space Sci., 28 pp.34-42.

Google Scholar

[9] M. Himeur, M. Guenfoud (2011) « Elément fini flexionnel triangulaire doté d'un quatrième nœud fictif basé sur l'approche en déformation » Revue « Nature & Technologie ». n° 05/Juin. Pages 43 à 56.

Google Scholar

[10] Reissner E(1945). The effect of transverse shear deformation on the bending of elastic plates. J. of Appl. Mech., Vol. 12 p. A69–A77.

DOI: 10.1115/1.4009435

Google Scholar

[11] Timoshenko S(1921) On the correction of transverse shear deformation of the differential equations for transverse vibrations of prismatic bars. Philosophical Magazine, Vol. 41 (series 6) p.744–746.

DOI: 10.1080/14786442108636264

Google Scholar

[12] Timoshenko S, Woinowsky-Krieger S (1959). Theory of plates and shells. London: McGraw-Hill.

Google Scholar

[13] Uflyand Y.S. (1948) The propagation of waves in the transverse vibrations of bars and plates. Akad. Nauk. SSSR, Prikl. Mat. Mech., Vol. 12 p.287–300.

Google Scholar

[14] ZIENKIEWCZ.O.C ET TAYLOR R.L (1991),The Finite Element Method, McGraw-Hill, London.

Google Scholar