Mathematical Simulation Methods to Evaluate the Effects of Actions on Conditional Preventive Maintenance of Complex Systems

Article Preview

Abstract:

In this work, we propose two mathematical simulation methods to evaluate the results of conditional preventive maintenance strategies based on controls and inspections with optimal performance. In order to have an optimal availability of the equipment in question, the evaluation of the maintenance strategies associated with the controls will be treated by the method of the fault trees based on the decision binary diagram with the calculation engine ALBIZIA. The maintenance performance associated with inspections will be determined by Petri networks coupled with the Monte Carlo method.

You might also be interested in these eBooks

Info:

Pages:

38-59

Citation:

Online since:

March 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Hongxia. L, Xian. C, Wei. L, Analysis on Influencing Factors of Emergency based on System Engineering, International Symposium on Emergency Management 2011, Systems Engineering Procedia 5 ( 2012 ) 15 – 20, Elsevier.

DOI: 10.1016/j.sepro.2012.04.003

Google Scholar

[2] Lesobre. R, Modélisation et optimisation de la maintenance et de la surveillance des Systèmes multi-composants, thèse de l'université de Grenoble Alpes, (2015).

Google Scholar

[3] Chouikhi. H, Optimisation des stratégies de maintenance verte pour les systèmes de production de biens et de services, thèse de l'université de Lorraine, 13 Décembre (2012).

Google Scholar

[4] Mustapha. N, Eric. C, Nabil. N, Joint redundancy and imperfect preventive maintenance optimization for series–parallel multi-state degraded systems, Reliability Engineering and System Safety 103 (2012) 51–60.

DOI: 10.1016/j.ress.2012.03.004

Google Scholar

[5] Maryam.H, Ferenc.S, Miklos.S, New One Cycle Criteria for Optimizing Preventive Replacement Policies, Reliability Engineering and System Safety, Reference: RESS5543, 10/04/(2016).

DOI: 10.1016/j.ress.2016.04.010

Google Scholar

[6] Mohammad. D, Farhad. K, Mahdi. D, A Reliability-based approach to optimize preventive maintenance scheduling for coherent systems, Reliability Engineering and System Safety 126 (2014) 98–106.

DOI: 10.1016/j.ress.2014.01.010

Google Scholar

[7] Pascual. R, Meruane. V, Rey. P. A, On the effect of downtime costs and budget constraint on preventive and replacement policies, Reliability Engineering and System Safety 93 (2008) 144–151.

DOI: 10.1016/j.ress.2006.12.002

Google Scholar

[8] Ross S.M., Introduction to probability models. Elsevier (2007), India, 9 edition. 11.

Google Scholar

[9] Baranger. C, Mathiaud. J, Méthode de Monte-Carlo, http://wwwdfr.ensta.fr/Cours/docs/D11- 2/ cours Monte Carlo ENSTA.pdf, 2012/2013, Date of access23/06/(2015).

Google Scholar

[10] Chabot. J, Dutuit. Y, Rauzy. A, De l'usage de la simulation de MONTE-CARLO couplée aux réseaux de PETRI en sureté de fonctionnement ,3e Conférence Francophone de Modélisation et Simulation, Avril 2001 – Troyes (France).

DOI: 10.4267/2042/56170

Google Scholar

[11] Renault. E, Linard. A, Diagrammes de Décision Binaires, https:/www.Irde.epita.fr/~renault/teaching/imc/3-bdd.pdf ,Date of access14/07/(2016).

Google Scholar

[12] Thomase. P, Manuel d'utilisation MOCA-RP 13.21Version 31 Mars (2014).

Google Scholar

[13] Jean. H, pratique de la maintenance préventive, DUNOD ISBN 21000656010.

Google Scholar

[14] Thales, manuel technique partie1 CVOR 431N°de référence 83130 55133.

Google Scholar

[15] Valaei. M. R, Behnamian. J, Allocation and sequencing in 1-out-of-N heterogeneous cold-standby systems: Multi-objective harmony search with dynamic parameters tuning Reliability Engineering and System Safety 157(2017)78–86.

DOI: 10.1016/j.ress.2016.08.022

Google Scholar

[16] David. W, Cold-standby redundancy optimization for non-repairable systems IIE Transactions, 33:6, 471-478.

DOI: 10.1080/07408170108936846

Google Scholar

[17] Megdiche. M, Sûreté de fonctionnement des réseaux de distribution en présence de production décentralisée, Institut National Polytechnique de Grenoble - INPG, (2004).

Google Scholar

[18] Feizabadi. M, Eshraghniaye Jahromi. A, A new model for reliability optimization of series-parallel systems with non-homogeneous components Reliability Engineering and System Safety 157 (2017) 101–112.

DOI: 10.1016/j.ress.2016.08.023

Google Scholar

[19] Eryilmaz. S, A reliability model for a three-state degraded system having random degradation rates Reliability Engineering and System Safety 156 (2016) 59–63.

DOI: 10.1016/j.ress.2016.07.011

Google Scholar

[20] Basu. A. P, El Mawaziny. A. H, Estimates of Reliability of k-Out-of-m Structures in the Independent Exponential Case, Journal of the American Statistical Association, Vol. 73, No. 364 (1978), pp.850-854.

DOI: 10.1080/01621459.1978.10480111

Google Scholar

[21] Hajipour Y., Taghipour. S, Non-Periodic Inspection Optimization of Multi- Component and k-out-of-m Systems, Reliability Engineering and System Safety ,Reference: RESS5619, (2016).

DOI: 10.1016/j.ress.2016.08.008

Google Scholar

[22] Alaswad. S, Xiang. Y, A review on condition-based maintenance optimization models for stochastically deteriorating system, Reliability Engineering and System Safety 157 (2017) 54–63.

DOI: 10.1016/j.ress.2016.08.009

Google Scholar