Optimal Reinsurance through Minimizing New Risk Measures under Technical Benefit Constraints

Article Preview

Abstract:

In this paper we present an approach to minimize the actuarial risk for the optimal choice of a form of reinsurance, and this is intended to be through a choice of treated parameters that minimize the risk using the Conditional Tail Expectation and the Conditional Tail Variance risk measures. The minimization procedure is based on the Augmented Lagrangian and a genetic algorithm with technical benefit as a constraint. This approach can be seen as a decision support tool that can be used by managers to minimize the actuarial risk in the insurance company.

You might also be interested in these eBooks

Info:

Pages:

24-37

Citation:

Online since:

March 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Aase (2002), Perspectives of risk sharing, Scandinavian Actuarial Journal, Vol 2, (2002).

Google Scholar

[2] Acerbi & al (2002), On the Coherence of Expected Shortfall, Journal of Banking and Finance Vol 26, Iss 7.

Google Scholar

[3] Andreani, Birgin, Martínez, & Schuverdt (2007), On augmented Lagrangian methods with general lower-level constraint,. SIAM Journal on Optimization, 18, 1286–1302.

DOI: 10.1137/060654797

Google Scholar

[4] Artzner & Delbaen (1997), Definition of coherent measures of risk, European Finance Association, Symposium August 27-30.

Google Scholar

[5] Artzner (1999), Application of coherent risk measures to capital requirements in insurance, North American Actuarial Journal, April 1999 Vol 3, N°2.

DOI: 10.1080/10920277.1999.10595795

Google Scholar

[6] Balbas & al (2009), Optimal reinsurance with general risk measures, Insurance: Mathematics and Economics 44.

Google Scholar

[7] Ben Dbabis (2013), Modèles et méthodes actuarielles pour l'évaluation quantitative des risques en environnement Solvabilité II, Thèse de doctorat, Université Paris Dauphine.

Google Scholar

[8] Birgin, Castillo, & Martínez (2005), Numerical comparison of augmented Lagrangian algorithms for nonconvex problems, Computational Optimization and Applications, 31.

DOI: 10.1007/s10589-005-1066-7

Google Scholar

[9] Blazenko (1985), Optimal insurance policies, Insurance: Mathematics and Economics, Vol 4, (1985).

Google Scholar

[10] Borch (1960), An attempt to determine the optimum amount of Stop loss reinsurance, Transactions of the 16th International Congress of Actuaries, 597-610.

Google Scholar

[11] Cai & Tan (2007), Optimal Retention for a Stop loss Reinsurance Under the VaR and CTE Risk Measures, Astin Bulletin (2007).

DOI: 10.2143/ast.37.1.2020800

Google Scholar

[12] Cantu Paz (2000), Efficient and Accurate Parallel Genetic Algorithms, Kluwer Academic Publishers.

Google Scholar

[13] Centeno (2002a), Excess of loss reinsurance and gerber's inequality in the sparre Anderson model, Insurance: Mathematics and Economics 31.

DOI: 10.1016/s0167-6687(02)00187-7

Google Scholar

[14] Centeno (2002b), Measuring the effects of reinsurance by the adjustment coeffcient in the sparre anderson model, Insurance: Mathematics and Economics 30, 37.

DOI: 10.1016/s0167-6687(01)00095-6

Google Scholar

[15] Centeno (2005), Dependent risks and Excess of loss reinsurance, Insurance: Mathematics and Economics 37.

DOI: 10.1016/j.insmatheco.2004.12.001

Google Scholar

[16] Davis. L. (1991), The genetic Algorithm Handbook, Ed. New- York: Van Nostrand Reinhold, ch.17.

Google Scholar

[17] Daykin & Pesonen (1994), Practical Risk Theory for Actuaries, Chapman & Hall, London.

Google Scholar

[18] Deestra & Plantin (2004), La réassurance, Economica, (2004).

Google Scholar

[19] Denault, M. (2001), Coherent Allocation of Risk Capital, Journal of Risk 4, 1-34.

Google Scholar

[20] Denuit (2004), Charpentier, Mathématiques de l'assurance non vie, tome 1 : Principes fondamentaux de théorie du risque. Economica (2004).

Google Scholar

[21] Dickson (1992), On the distribution of surplus prior to ruin, Insurance: Mathematics and Economics 11.

DOI: 10.1016/0167-6687(92)90026-8

Google Scholar

[22] Emiliano & Valdez (2004), On Tail Conditional Variance and Tail Covariances, Faculty of Commerce & Economics, The University of New South Wales Sydney, AUSTRALIA (2052).

Google Scholar

[23] Enteno (2002b), Measuring the effects of reinsurance by the adjustment coefficient in the sparre anderson model, Insurance: Mathematics and Economics 30, 37-49.

DOI: 10.1016/s0167-6687(01)00095-6

Google Scholar

[24] Goldberg (1989), Genetic Algorithms in search, optimization and Machine learning, Addison-Wesley.

Google Scholar

[25] Grandell (1991), Aspects of Risk Theory, Springer - Verlag, New York.

Google Scholar

[26] Hancock, Huber & Koch (2001), Value Creation in the Insurance Industry, Risk Management and Insurance Review 4, 1-9.

DOI: 10.1111/1098-1616.00001

Google Scholar

[27] Hess (2000), Méthodes actuarielles de l'assurance vie, Economica.

Google Scholar

[28] Ignatove, Kaishev & Krachunov (2004), Optimal retention levels, given the joint survival of cedent and reinsurer, Scandinavian Actuarial Journal 6, (2004).

DOI: 10.1080/03461230410020437

Google Scholar

[29] K.S Tan, C.Weng & Y. Zhang (2011), Optimality of general reinsurance contracts under CTE risk measure, Insurance: Mathematics and Economics, 49(2), 175–187.

DOI: 10.1016/j.insmatheco.2011.03.002

Google Scholar

[30] K.S. Tan & Chi, Y (2011), Optimal reinsurance under VaR and CVaR risk measures: A simplified approach, ASTIN Bulletin, 41(2), 487-509.

Google Scholar

[31] Kaas & al (2001), Modern Actuarial Risk Theory, Boston, Dordrecht, London, Kluwer Academic Publishers 28.

Google Scholar

[32] Kaas, Goovaerts, Dhaene & Denuit (2001), Modern Actuarial Risk Theory, Klawer, Boston.

DOI: 10.1007/978-3-540-70998-5

Google Scholar

[33] Kleiber, Kotz (2003), Statistical Size Distributions in Economics and Actuarial Sciences, New Jersey: John Wiley & Sons, Inc.

DOI: 10.1002/0471457175

Google Scholar

[34] Landsman, Emiliano & Valdez (2004), Tail Conditional Expectations for Exponential Dispersion Models, University of New South Wales, Sydney, AUSTRALIA , February (2004).

Google Scholar

[35] Liang Hong & Ahmed Elshahat (2011), Conditionnal Tail Variance and Conditionnal Tail Skewness in Finance and Insurance, Bradley University.

Google Scholar

[36] Lutton (1999), Algorithmes génétiques et Fractales, Dossier d'habilitation à diriger des recherches, Université Paris XI Orsay, 11 Février (1999).

Google Scholar

[37] Mathieu Boudreault (2010), Mathématiques du risque, Document de référence, Département de mathématiques, Université du Québec à Montréal.

Google Scholar

[38] Panjer (2002), Measurement of Risk, Solvency Requirements, and Allocation of Capital within Financial Conglomerates, Research Report 01-14. Institute of Insurance and Pension Research, University of Waterloo, Canada.

Google Scholar

[39] Patrick (2004), Reinsurance, Encyclopedia of Actuarial Science, Wiley, 1400-1403.

Google Scholar

[40] Petauton, Kessler & Bellando (2002), Théorie et pratique de l'assurance vie : manuel et exercices corrigés, Dunod.

Google Scholar

[41] Renders (1995), Algorithmes génétiques et Réseaux de Neurones, Editions HERMES.

Google Scholar

[42] Rockafellar & Uryasev (2000), Optimization of conditional value-at-risk, Journal of Risk, 2, 21-42.

Google Scholar

[43] Rytgaard (2004), Stop loss reinsurance, Encyclopedia of Actuarial Science, Wiley.

DOI: 10.1002/9780470012505.tas037

Google Scholar

[44] S. Amédée & R. Francois (2004), Algorithme génétique, TE de fin d'année Tutorat de Philippe Audebaud.

Google Scholar

[45] Walhin & Lampaert (2005), On the Optimality of Proportional Reinsurance, Scandinavian Actuarial Journal, vol 3, (2005).

DOI: 10.1080/03461230510009781

Google Scholar

[46] Zinoviy Landsman (2014), Tail risk measures for Generalized Skew - Elliptical distributions, 8th Conference in Actuarial Science & Finance on Samos.

Google Scholar