Mechanical and Water Absorption Properties of Normal Strength Concrete (NSC) Containing Secondary Aluminum Dross (SAD)

Article Preview

Abstract:

Utilization of secondary aluminium dross (SAD) as a constituent material in production of concrete is one of the recycling and value-added alternatives of reusing the waste due to the environmental friendliness, economy and improved performances associated with the material. This present study investigates the feasibility of incorporating SAD as a replacement binder in normal strength concrete (NSC). X-ray fluorescence (XRF) analysis revealed that the investigated SAD is rich in alumina content while exhibiting expansive property when tested via Le Chatelier apparatus. The studied fresh concrete samples blended with SAD recorded low workability and densities as the replacement levels increase. Compressive, split tensile and flexural strength tests conducted on the hardened concrete indicated a reduce strength as the percentage contents of the SAD increases when compared with the reference mixture. Moreover, the water absorption results also revealed higher water absorption capacity of the hardened concrete samples with increasing percentage contents of the SAD in the concrete samples. It is, therefore, suggested that blend of Portland cement (PC) with SAD content within 10% will be beneficial in the production of normal strength concrete for the structural purpose by the construction industry, while also limiting the impact of the aluminium waste on the environment.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] A. K Tripathy, S. Mahalik, C.K Sarangi, B.C Tripathy, K. Sanjay, & I.N Bhattacharya, A pyro-hydrometallurgical process for the recovery of alumina from waste aluminum dross. Minerals Engineering, 137 (2019) 181-186.

DOI: 10.1016/j.mineng.2019.04.009

Google Scholar

[2] M. Mahinroosta, & A. Allahverdi, A promising green process for synthesis of high purity activated-alumina nanopowder from secondary aluminum dross. Journal of cleaner production, 179 (2018) 93-102.

DOI: 10.1016/j.jclepro.2018.01.079

Google Scholar

[3] Q Yang, Q Li, G. Zhang, Q Shi, & H Feng, Investigation of leaching kinetics of aluminum extraction from secondary aluminum dross with use of hydrochloric acid. Hydrometallurgy, 187 (2019) 158-167.

DOI: 10.1016/j.hydromet.2019.05.017

Google Scholar

[4] A. Meshram, & K.K Singh, Recovery of valuable products from hazardous aluminum dross: A review. Resources, Conservation and Recycling, 130 (2018), 95-108.

DOI: 10.1016/j.resconrec.2017.11.026

Google Scholar

[5] P.E Tsakiridis, P. Oustadakis, & S. Agatzini-Leonardou, Aluminium recovery during black dross hydrothermal treatment. Journal of Environmental Chemical Engineering, 1(2013) 23-32.

DOI: 10.1016/j.jece.2013.03.004

Google Scholar

[6] T. Oresanya, C. Ben-Enukora, O. Omojola, O. Oyero, & L.O Amodu, Health communication and awareness of aluminium-waste disposal effects among Ogun state housing corporation residents. Proceedings of SOCIOINT, 4th International Conference on Education, Social Sciences and Humanities, Dubai: UAE, July 10–12, (2017).

DOI: 10.18844/prosoc.v4i10.3076

Google Scholar

[7] R. Galindo, I. Padilla, R. Sánchez-Hernández, J.I Robla, G. Monrós, & A. López-Delgado, Production of added-value materials from a hazardous waste in the aluminium tertiary industry: Synergistic effect between hydrotalcites and glasses. Journal of Environmental Chemical Engineering, 3 (2015) 2552-2559.

DOI: 10.1016/j.jece.2015.09.012

Google Scholar

[8] Y. Liu, B. S Leong, Z.T Hu, & E.H Yang, Autoclaved aerated concrete incorporating waste aluminum dust as foaming agent. Construction and Building Materials, 148 (2017) 140–147.

DOI: 10.1016/j.conbuildmat.2017.05.047

Google Scholar

[9] A. Meshram, A. Jain, D. Gautam, & K.K Singh, Synthesis and characterization of tamarugite from aluminium dross: part I. Journal of Environmental Management, 232 (2019) 978-984.

DOI: 10.1016/j.jenvman.2018.12.019

Google Scholar

[10] C. Dai, & D. Apelian, Fabrication and characterization of aluminum dross-containing mortar composites: upcycling of a waste product. Journal of Sustainable Metallurgy, 3 (2017) 230-238.

DOI: 10.1007/s40831-016-0071-7

Google Scholar

[11] A. M. Neville, Neville's Insight and Issues. Thomas Telford books, London, (2012).

Google Scholar

[12] E.M.M Ewais, N.M Khalil, M.S Amin, Y.M.Z Ahmed, & M.A Barakat, Utilization of aluminum sludge and aluminum slag (dross) for the manufacture of calcium aluminate cement. Ceramics International, 35 (2009), 3381-3388.

DOI: 10.1016/j.ceramint.2009.06.008

Google Scholar

[13] D. Bajare, A. Korjakins, J. Kazjonovs, & I. Rozenstrauha, Pore structure of lightweight clay aggregate incorporate with non-metallic products coming from aluminium scrap recycling industry. Journal of the European Ceramic Society, 32 (2012) 141-148.

DOI: 10.1016/j.jeurceramsoc.2011.07.039

Google Scholar

[14] I. Perná, & T. Hanzlíček, The solidification of aluminum production waste in geopolymer matrix. Journal of cleaner production, 84 (2014) 657-662.

DOI: 10.1016/j.jclepro.2014.04.043

Google Scholar

[15] Z. Li, Advanced concrete technology. John Wiley & Sons (2011).

Google Scholar

[16] M.C Shinzato, & R. Hypolito, Solid waste from aluminum recycling process: characterization and reuse of its economically valuable constituents. Waste management, 25 (2005) 37-46.

DOI: 10.1016/j.wasman.2004.08.005

Google Scholar

[17] A.U. Elinwa, & E. Mbadike, The use of aluminum waste for concrete production. Journal of Asian Architecture and Building Engineering, 10 (2011) 217-220.

DOI: 10.3130/jaabe.10.217

Google Scholar

[18] B. Inseemeesak, & A. Rodchanarowan, The Influence of Aluminium Dross on Cement Paste's Porosity. In Advanced Materials Research 747 (2013) 445-448.

DOI: 10.4028/www.scientific.net/amr.747.445

Google Scholar

[19] N. Ozerkan, O. Maki, M. Anayeh, S.M Tangen, & A. Abdullah, The effect of aluminium dross on mechanical and corrosion properties of concrete, 3 (2014) 9912-9922.

Google Scholar

[20] S.O Adeosun, O.I Sekunowo, O.O Taiwo, W.A Ayoola, & A. Machado, Physical and mechanical properties of aluminum dross. Adv. Mater., 3 (2014), 6-10.

Google Scholar

[21] P.E Tsakiridis, P. Oustadakis, & S. Agatzini-Leonardou, Black dross leached residue: An alternative raw material for portland cement clinker. Waste and Biomass Valorization, 5 (2014) 973-983.

DOI: 10.1007/s12649-014-9313-8

Google Scholar

[22] M.S Reddy & D. Neeraja, Mechanical and durability aspects of concrete incorporating secondary aluminium slag. Resource-Efficient Technologies, 2 (2016) 225–232.

DOI: 10.1016/j.reffit.2016.10.012

Google Scholar

[23] G. Mailar, S. Raghavendra, B.M Sreedhara, D.S Manu, P. Hiremath, & K. Jayakesh, Investigation of concrete produced using recycled aluminium dross for hot weather concreting conditions. Resource-Efficient Technologies, 2 (2016), 68-80.

DOI: 10.1016/j.reffit.2016.06.006

Google Scholar

[24] S. Javali, A.R Chandrashekar, S.R Naganna, D.S Manu, P. Hiremath, H.G Preethi, & N.V Kumar, Eco-concrete for sustainability: Utilizing aluminum dross and iron slag as partial replacement materials. Clean Technologies and Environmental Policy, 19 (2017) 2291–2304.

DOI: 10.1007/s10098-017-1419-9

Google Scholar

[25] A.A Busari, I.I Akinwumi, P.O Awoyera, O.M Olofinnade, T.I Tenebe, & J.C Nwanchukwu, Stabilization Effect of Aluminum Dross on Tropical Lateritic Soil. In International Journal of Engineering Research in Africa 39 (2018) 86-96.

DOI: 10.4028/www.scientific.net/jera.39.86

Google Scholar

[26] M. López-Alonso, M.J Martinez-Echevarria, L. Garach, A. Galán, J. Ordoñez & F. Agrela, Feasible use of recycled alumina combined with recycled aggregates in road construction. Construction and Building Materials, 195 (2019) 249-257.

DOI: 10.1016/j.conbuildmat.2018.11.084

Google Scholar

[27] R.T Loto & A. Busari, Influence of White Aluminum Dross on the Corrosion Resistance of Reinforcement Carbon Steel in Simulated Concrete Pore Solution. Journal of Bio-and Tribo-Corrosion, 5(2019), 19.

DOI: 10.1007/s40735-018-0211-7

Google Scholar

[28] D.O Nduka, O. Joshua, A.M Ajao, B.F. Ogunbayo & K.E Ogundipe, Influence of secondary aluminum dross (SAD) on compressive strength and water absorption capacity properties of sandcrete block. Cogent Engineering, (2019): 1608687.

DOI: 10.1080/23311916.2019.1608687

Google Scholar

[29] UNI EN ISO 10545‐3. Determination of Water Absorption, Apparent Porosity, Apparent Relative Density and Bulk Density (2000).

DOI: 10.3403/30321734

Google Scholar

[30] Nigeria Industrial Standard NIS 441:1 Composition, specifications and conformity criteria for common cements. Lagos: (2007), Standard Organization of Nigeria.

Google Scholar

[31] Code, B. (2006). Federal Republic of Nigeria: National Building Code.

Google Scholar

[32] EN, 197-1. Cement, Composition, Specifications and Conformity Criteria for Common Cements. London, England: (2011). British Standard Institution (BSI).

Google Scholar

[33] Nigeria Industrial Standard NIS 441:1. Composition, specifications and conformity criteria for common cements. Lagos. (2004). Standard Organization of Nigeria.

Google Scholar

[34] M.S Shetty, Concrete technology - theory and practice, (2004) S. Chand and Company Limited, New Delhi, India.

Google Scholar

[35] BS EN 1008, Mixing Water for Concrete. (2002). British Standards Institution: London, UK.

Google Scholar

[36] BS EN 12350-2, Testing fresh concrete-Part 2: Slump test. (2009). European Committee for Standardization.

Google Scholar

[37] BS EN 12390-3, Testing hardened concrete. Compressive strength of test specimens. (2009). European Committee for Standardization.

Google Scholar

[38] BS EN 12390-5, Testing Hardened Concrete. Flexural Strength of Test Specimens. (2009). British Standard Institution, London.

Google Scholar

[39] P.K Mehta & J.M Monteiro, Concrete microstructure properties and materials (4th ed.), McGraw-Hill Education, (2014), United States.

Google Scholar

[40] IS: 4031 (3), Methods of physical tests for hydraulic cement, part 3: determination of soundness, Bureau of Indian Standards, (1988).

Google Scholar