Stability Analysis of MHD Fluid Flow over a Moving Plate with Pressure Gradient Using the Chebyshev Spectral Method

Article Preview

Abstract:

The purpose of this paper is to investigate the magnetohydrodynamic stability external flow of a viscous, incompressible and electrically conducting fluid over a moving flat plate using temporal linear stability analysis. Using a similarity variables based on the Skan-Falkner transformation, the governing differential equations of mean flow are transformed into a nonlinear ordinary differential equation, which is then solved numerically by the Runge-Kutta method. The MHD stability equation is solved numerically by using the Chebyshev spectral collocation method, which is based on the eigenfunction expansion in terms of Chebyshev polynomials, collocation points, and the subsequent solution of the resulting generalized eigenvalue problem with the QZ algorithm. The influence of the pressure gradient, magnetic field and wall velocity on the dimensionless mean velocity are presented graphically and discussed. For the disturbance flow in the presence of magnetic field and moving wall, the critical Reynolds number increases with increasing the magnetic field parameter and wall velocity, indicating that these parameters stabilize the flow.

You might also be interested in these eBooks

Info:

Pages:

29-38

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. salish Kumar, N. Sandeep, B. Rushi Kumar, Dual solutions for heat and mass transfer in MHD bio-convective flow over a stretching/shrinking surface with suction/injection, International journal of engineering research in Africa, 21 (2015) 84-101.

DOI: 10.4028/www.scientific.net/jera.21.84

Google Scholar

[2] A.Jasmine Benaziz, R. Sivaraj and O. D. Makinde, Unsteady Magnetohydrodynamic Casson Fluid Flow over a Vertical Cone and Flat Plate with Non-Uniform Heat Source/Sink , International journal of engineering research in Africa, 21 (2015) 69-83.

DOI: 10.4028/www.scientific.net/jera.21.69

Google Scholar

[3] V. Ravikumar, M. C. Raju, G. S. S. Raju, Investigation of an Unsteady MHD Free Convection Heat and Mass Transfer Flow of a Non-Newtonian Fluid Flow Past a Permeable Moving Vertical Plate in the Presence of Thermal Diffusion and Heat Sink, International journal of engineering research in Africa, 16 (2015) 90-109.

DOI: 10.4028/www.scientific.net/jera.16.90

Google Scholar

[4] Y. Zhang, J. Jiang, Y, Bai, MHD flow and heat transfer analysis of fractional Oldroyd-B nanofluid between two coaxial cylinders, Computers & Mathematics with Applicationa, 78 (10) (2019) 3408-3421.

DOI: 10.1016/j.camwa.2019.05.013

Google Scholar

[5] A. Laouer, R. Djeghiour, Lattice Boltzmann Simulation of Magnetohydrodynamic Free Convection in a Square Enclosure with Non-uniform Heating of the Bottom Wall, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 59 (1) (2019) 13-28.

Google Scholar

[6] J. Hartmann, F. Kgl. Lazarus danske videnskab. selskab, Mat.-Fys. Medd 15: (1937) 6–7.

Google Scholar

[7] R. Moreau, Magnetohydrodynamics, Kluwer Academic Publishers, Dordrecht, (1990).

Google Scholar

[8] T. Watanabe, Magnetohydrodynamic stability of boundary layers along a flat plate with pressure gradient, Acta Mechanica 65 (1986) 41–50.

DOI: 10.1007/bf01176871

Google Scholar

[9] P. S. Lawrence, R. B. Nageswara, Effect of pressure gradient on MHD boundary layer over a flat plate, Acta Mechanica, 113 (1995) 1–7.

DOI: 10.1007/bf01212629

Google Scholar

[10] M. A. M. Ahmed, M. E. Mohammed, A. A. Khidir, On linearization method to MHD boundary layer convective heat transfer with low pressure gradient, Propulsion and Power Research 4(2) (2015) 105–113.

DOI: 10.1016/j.jppr.2015.04.001

Google Scholar

[11] H. Aly, M. Benlahsen, M. Guedda, Similarity solutions of a MHD boundary-layer flow past a continuous moving surface, International Journal of Engineering Science 45 (2007) 486–503.

DOI: 10.1016/j.ijengsci.2007.04.016

Google Scholar

[12] K. Das, Radiation and melting effects on MHD boundary layer flow over a moving surface, Ain Shams Eng. J. 5 (4) (2014) 1207–1214.

DOI: 10.1016/j.asej.2014.04.008

Google Scholar

[13] Y. J. Kim, Unsteady MHD convective heat transfer past a semi-infinite vertical porous moving plate with variable suction, International Journal of Engineering Science 38 (8) (2000) 833–845.

DOI: 10.1016/s0020-7225(99)00063-4

Google Scholar

[14] R. Sharma, A. Ishak, I. Pop, Stability analysis of magnetohydrodynamic stagnation point flow toward a stretching shrinking sheet, Computers and Fluids 102 (2014) 94–98.

DOI: 10.1016/j.compfluid.2014.06.022

Google Scholar

[15] R. C. Lock, The stability of the flow of an electrically conducting fluid between parallel planes under a transverse magnetic field, Proc. Roy. Soc. London Ser. A233 (1955) 105–125.

DOI: 10.1098/rspa.1955.0249

Google Scholar

[16] T. Watanabe, T. Pop, F. Goto, MHD stability of boundary layer flow over a moving flat plate, Technische Mechanic (Band 15 Heft 4) (1995) 325–332.

Google Scholar

[17] V. Kumaran, A. V. Kumar, I. Pop, Transition of MHD boundary layer flow past a stretching sheet, Communications in Nonlinear Science and Numerical Simulation 15 (2) (2010) 300–311.

DOI: 10.1016/j.cnsns.2009.03.027

Google Scholar

[18] B. M. Shankar, J. Kumar, I. S. Shivakumara, Magnetohydrodynamic stability of natural convection in a vertical porous slab, Journal of Magnetism and Magnetic Materials 421 (2017) 152–164.

DOI: 10.1016/j.jmmm.2016.08.010

Google Scholar

[19] D. GrardVaret, M.Prestipino, Formal derivation and stability analysis of boundary layer models in MHD, Z. Angew. Math. Phys. 68 (3) (2017) 16.

DOI: 10.1007/s00033-017-0820-x

Google Scholar

[20] Z. Hussain, S. Hussain, T. Kong, and Z. Liu, Instability of MHD couette flow of an electrically conducting fluid, AIP ADVANCES 8 (2018) 105209.

DOI: 10.1063/1.5051624

Google Scholar

[21] D. Giannakis, P. F. Fischer, R. Rosner, A spectral Galerkin method for the coupled Orr–Sommerfeld and induction equations for free-surface MHD, Journal of Computational Physics 228 (4) (2009). 1188–1233.

DOI: 10.1016/j.jcp.2008.10.016

Google Scholar

[22] O. D. Makinde, On chebyshev collocation approach to stability of fluid flows in a porous medium, International Journal for Numerical Methods in Fluids 59 (2009) 791–799.

DOI: 10.1002/fld.1847

Google Scholar

[23] O. D. Makinde, P. Y. Mhone, On temporal stability analysis for hydromagnetic flow in a channel filled with a saturated porous medium, Flow, Turbulence and Combustion, 83 (2009) 21-32.

DOI: 10.1007/s10494-008-9187-6

Google Scholar

[24] O. D. Makinde, Chebyshev collocation approach to stability of blood flows in a large artery, African Journal of Biotechnology, 11 (41) (2012) 9881-9887.

DOI: 10.5897/ajb11.3906

Google Scholar

[25] A. Hifdi, M. O. Touhami, J. K. Naciri, Channel entrance flow and its linear stability, J. Stat. Mech.: Theory Exp. 2004 (2004) 06003.

DOI: 10.1088/1742-5468/2004/06/p06003

Google Scholar

[26] A. Laouer, E. Mezaache, S. Laouar, Influence of surface mass transfer on the stability of forced convection flow over an horizontal flat plate, Computational Thermal Sciences 08 (4) (2016) 355–369.

DOI: 10.1615/computthermalscien.2016016415

Google Scholar

[27] T. Cebeci, P. Bradshaw, Physical and computational aspects of convective heat transfer, New York: Springer-Verlag, (1984).

Google Scholar

[28] E. Mezaache, M. Daguenet, Etude numérique de l'évaporation dans un courant d'air humide laminaire et turbulent d'un film d'eau ruisselant sur une plaque inclinée, The Canadian Journal of Chemical Engineering 78 (5) (2000) 994–1005.

DOI: 10.1002/cjce.5450780517

Google Scholar

[29] E. Mezaache, M. Daguenet, Effects of inlet conditions on film evaporation along an inclined plate. Solar Energy 78 (4) (2005) 535-542.

DOI: 10.1016/j.solener.2004.04.007

Google Scholar

[30] R. B. Kudenatti, S. R. Kirsur, L. N. Achala, N. M. Bujurke, Exact solution of two-dimensional MHD boundary layer flow over a semi infinite flat plate, Commun Nonlinear Sci Numer Simulat 18: (2013) 1151–1161.

DOI: 10.1016/j.cnsns.2012.09.029

Google Scholar

[31] A. Bejan, Convection heat transfer, New York: Wiley, (1995).

Google Scholar

[32] S. A. Orszag, Accurate solution of the Orr-sommerfeld stability equation, Journal of Fluid Mechanics 50 (4) (1971) 689–703.

DOI: 10.1017/s0022112071002842

Google Scholar

[33] T. Y. Na, Computational Method in Engineering Boundary Value Problems, Academic Press New York, (1979).

Google Scholar

[34] J. P. Boyd, Chebyshev and Fourier Spectral Methods, Dover Publications, (2001).

Google Scholar

[35] R. Peyret, Spectral Methods for Incompressible Viscous Flow, Springer: Verlag, (2002).

Google Scholar

[36] V. Theofilis, The discrete temporal eigenvalue spectrum of the generalised Hiemenz flow as solution of the Orr-sommerfeld equation, Journal of Engineering Mathematics 28 (1994) 241–259.

DOI: 10.1007/bf00058439

Google Scholar

[37] E. Essaghir, Y. Haddout, A. Oubarra, J. Lahjomri, Non-similar solution of the forced convection of laminar gaseous slip flow over a flat plate with viscous dissipation: linear stability analysis for local similar solution, Meccanica 51 (1) (2016) 99–115.

DOI: 10.1007/s11012-015-0204-2

Google Scholar