[1]
Y. Tian, M. Beniddris, S. Sulaeman, S. Elsaiah, and J. Mitra, Optimal feeder reconfiguration and distributed generation placement for reliability improvement, Proc. International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), 2016, pp.1-7.
DOI: 10.1109/pmaps.2016.7764202
Google Scholar
[2]
F. Meng, B. Chowdhury, and M. Chamana, Three-phase optimal power flow for market-based control and optimization of distributed generations, IEEE Transactions on Smart Grid, vol. 2, 2016, pp.1-9.
DOI: 10.1109/tsg.2016.2638963
Google Scholar
[3]
G. Nannapaneni, A. Amaniampong, T.M. Masaud, and R. Challo, Optimal allocation of SCIG and DFIG based distributed generation considering load uncertainty and line outage: a comparative study, Proc. IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), 2016, pp.1-4.
DOI: 10.1109/isgt.2016.7781283
Google Scholar
[4]
G.A. Quiroga, H. Kagan, J.C.C. Amasifen, C.F.M. Almeida, N. Kagan, and E. Vicentini, Study of the distributed generation impact on distributed networks, focused on quality of power, Proc. 17th International Conference on harmonics and Quality of Power (ICHQP), 2016, pp.855-860.
DOI: 10.1109/ichqp.2016.7783376
Google Scholar
[5]
D. Zhou, F. Gao, E. Breaz, A. Ravey, A Miraoui, and K. Zhang, Dynamic phenomena coupling analysis and modelling of proton exchange membrane fuel cells, IEEE Transactions on Energy Conversion, 2016, vol. 31, pp.1399-1412.
DOI: 10.1109/tec.2016.2587162
Google Scholar
[6]
S.G. Malla, and R.K. Vadrevu, Novel controller scheme for grid connected fuel cell, Proc. International Conference on Electrical, Electronics, and Optimization techniques (ICEEOT), 2016, pp.4425-4430.
DOI: 10.1109/iceeot.2016.7755555
Google Scholar
[7]
C. Cai, H. Jou, K. Wu, Y. Shen, and J. Wu, Novel active power line conditioner integrating fuel cell and battery set, Proc. IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), 2016, pp.1453-1458.
DOI: 10.1109/iciea.2016.7603814
Google Scholar
[8]
K.M.S.Y. Konara, M.L. Kolhe, and A. Nishimura, Grid integration of PEM fuel cell with multiphase switching for maximum power operation, Proc. IEEE International Conference on Power System Technology (POWERCON), 2016, pp.1-5.
DOI: 10.1109/powercon.2016.7753981
Google Scholar
[9]
Y. Wu, E. Breaz, F. Gao, D. Paire, and A. Miraoui, Nonlinear performance degradation prediction of proton exchange membrane fuel cells using relevance vector machine, IEEE Transactions on Energy Conversion, 2016, vol. 31, pp.1570-1582.
DOI: 10.1109/tec.2016.2582531
Google Scholar
[10]
K. Ettihir, L. Boulon, and K. Agbossou, Energy management strategy for a fuel cell hybrid vehicle based on maximum efficiency and maximum power identification, IET Electrical Systems in Transportation, 2016, vol. 6, pp.261-268.
DOI: 10.1049/iet-est.2015.0023
Google Scholar
[11]
M. Chemsi, K. Agbossou, and A. Cardenas, Neural network back propagation algorithm control for PEM fuel cell in residential applications, Proc. IEEE Electrical Power and Energy Conference (EPEC), 2016, pp.1-6.
DOI: 10.1109/epec.2016.7771771
Google Scholar
[12]
G.D. Devi, M.A. Sabeena, C. Shankar, and V. Kirbakaran, Effect of temperature on the power output of a PEM fuel cell in a test bed condition, Proc. International Conference on Energy Efficient Technologies for Sustainability (ICEETS), 2016, pp.908-911.
DOI: 10.1109/iceets.2016.7583877
Google Scholar
[13]
S. Satpathy, S, Padhee, K. C. Bhuyan, and G.B. Ingale, Mathematical modelling and voltage control of fuel cell, Proc. International Conference on Energy Efficient Technologies for Sustainability (ICEETS), 2016, pp.781-786.
DOI: 10.1109/iceets.2016.7583853
Google Scholar
[14]
P.N. Ashita, Fuzzy hysteresis based power sharing controller for grid tied operation of a fuel cell, in Proc. IEEE 6th International Conference on Power Systems (ICPS), 2016, pp.1-5.
DOI: 10.1109/icpes.2016.7584154
Google Scholar
[15]
Y. Nassif, and H. Hamdan, Modelling and parameter observation of proton exchange membrane fuel cell, Proc. International Conference on development of E-Systems Engineering (DeSE), 2016, pp.270-275.
DOI: 10.1109/dese.2015.46
Google Scholar
[16]
Y. Wang, H. Liu, C. Lu, and B. Zhou, PEM fuel cell health assessment using a geometrical approach and Mahalanobis distance, Proc. 12th World Congress on Intelligent Control and Automation (WCICA), 2016, pp.1312-1316.
DOI: 10.1109/wcica.2016.7578457
Google Scholar
[17]
K. Javed, R. Gouriveau, N. Zerhouni, and D. Hissel, PEM fuel cell prognostics under variable load: a data-driven ensemble with new incremental learning, Proc. International Conference on Control, Decision and Information Technologies (CoDIT), 2016, pp.252-257.
DOI: 10.1109/codit.2016.7593569
Google Scholar
[18]
J. Chen, C. Xu, C. Wu, and W. Wu, Adaptive fuzzy logic control of fuel-cell-battery hybrid systems for electric vehicles, IEEE Transactions on Industrial Informatics, 2016, vol. 99., pp.1-9.
DOI: 10.1109/tii.2016.2618886
Google Scholar
[19]
D.M. Ali, A simplified dynamic simulation model (prototype) for a stand-alone polymer electrolyte membrane (PEM) fuel cell stack, Proc. 12th International Middle-East Power Systems Conference, 2008, pp.480-485.
DOI: 10.1109/mepcon.2008.4562321
Google Scholar
[20]
M.Y. El-Sharkh, A Rahaman, M.S. Alam, A.A. Sakla, P.C. Byrne, and T. Thomas, Analysis of active and reactive power control of a stand-alone PEM fuel cell power plant, IEEE Transactions on Power Systems, vol. 19, pp.2022-2028, (2004).
DOI: 10.1109/tpwrs.2004.836191
Google Scholar
[21]
A.K. Saha, S. Chowdhury, S.P. Chowdhury and Y.H. Song, Application of solid-oxide fuel cell in distributed power generation, IET Renewable Power Generation, 2007, vol. 1, pp.193-202.
DOI: 10.1049/iet-rpg:20070025
Google Scholar
[22]
A.K. Saha, S. Chowdhury, S.P. Chowdhury and Y.H. Song, Dynamic model of PEM fuel cell with fuzzy logic controller, Proc. International Universities Power Engineering Conference (UPEC), 2007, pp.753-757.
DOI: 10.1109/upec.2007.4469044
Google Scholar
[23]
B.M. Grainger, Medium voltage DC network modelling and analysis with preliminary studies for optimized converter configuration through PSCAD simulation environment, B.S Mech. Eng. thesis, University of Pittsburgh, Pittsburgh, USA, (2011).
Google Scholar
[24]
C. Gomathi, N. Nagath, S.V. Purnima, and S. Veerakumar, Comparison of PWM methods for multilevel inverter, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2013, vol. 2, pp.6106-6114.
Google Scholar
[25]
C. Govindaraju, and K Baskaran, Optimized hybrid phase disposition PWM control method for multilevel inverter, International Journal of Recent Trends in Engineering, 2009, vol. 1, pp.129-134.
Google Scholar
[26]
M. Ma, X. He, Wenping, W. Cao, X. Song, and B. Ji, Optimized phase disposition pulse-width modulation strategy for hybrid-clamped multilevel inverters using switching state sequences, IET Power Electronics, 2015, vol. 8, pp.1095-1103.
DOI: 10.1049/iet-pel.2014.0748
Google Scholar
[27]
B. Geethalakshmi, and P. Dananjayan, A combined multipulse-multilevel inverter based SSSC, Proc. International Conference on Power Systems, 2009, pp.1-6.
DOI: 10.1109/icpws.2009.5442662
Google Scholar
[28]
F. Wang, System harmonics reduction using multipulse AC fed PWM voltage source inverters, Proc. IEEE Power Engineering Society Winter Meeting, 1999, pp.1265-1268.
DOI: 10.1109/pesw.1999.747396
Google Scholar
[29]
D. Soto, and T.C. Green, A comparison of high-power converter topologies for the implementation of FACTS controllers, IEEE Transactions on Industrial Electronics, 2002, vol. 49, pp.1072-1080.
DOI: 10.1109/tie.2002.803217
Google Scholar