[1]
A.K. Agarwal, T. Gupta, P.C. Shukla and A. Dhar. Particulate emissions from biodiesel fuelled CI engines. Energy Conversion Manage. 94 (2015) 311-330.
DOI: 10.1016/j.enconman.2014.12.094
Google Scholar
[2]
A.E. Atabani, A.S. Silitonga, I.A. Badruddin, T.M.I. Mahlia, H.H. Masjuki ad S. Mekhilef. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable Sustainable Energy Rev., 16 (2012) 2070-2093.
DOI: 10.1016/j.rser.2012.01.003
Google Scholar
[3]
S.K. Hoekman, A. Broch, C. Robbins, E. Ceniceros and M. Natarajan. Review of biodiesel composition, properties and specifications. Renewable Sustainable Energy Rev., 16 (2012) 143-169.
DOI: 10.1016/j.rser.2011.07.143
Google Scholar
[4]
T. Issariyakul, M.G. Kulkarni, L.C. Meher, A.K. Dalai and N.N. Bakhshi. Biodiesel production from mixtures of canola oil and used cooking oil. Chem. Eng. J., 140 (2008) 77-85.
DOI: 10.1016/j.cej.2007.09.008
Google Scholar
[5]
G. Dwivedi, S. Jain and M.P. Sharma. Impact analysis of biodiesel on engine performance - a review. Renewable Sustainable Energy Rev., 15 (2011) 4633-464.
DOI: 10.1016/j.rser.2011.07.089
Google Scholar
[6]
M.B. Haggai, Transesterification of Desert Date Oil Using a Heterogeneous Catalyst. A Postgraduate Research Thesis Submitted to Abubakar Tafawa Balewa University, Bauchi, Nigeria, (2017).
DOI: 10.30880/ijie.2020.12.07.006
Google Scholar
[7]
J. Ramirez-Ortiz, M. Martinez, H. Flores. Metakaolinite as a catalyst for biodiesel production from waste cooking oil, Front. Chem. Sci. Eng., 6(4) (2012) 403–409.
DOI: 10.1007/s11705-012-1224-2
Google Scholar
[8]
V.D. Teku. Modified Kaolinite Clay as Catalyst for Biodiesel Production from Waste Cooking Oil. A Master Dissertation Submitted to School Postgraduate Studies, Ahmadu Bello University, Zaria-Nigeria, (2017).
Google Scholar
[9]
A. Buasri, N. Chaiyut, V. Loryuenyong, C. Wongweang, S. Khamsrisuk. Application of eggshell wastes as a heterogeneous catalyst for biodiesel production. Sustainable Energy, 1(2) (2013) 7-13.
Google Scholar
[10]
S. Niju, K.M. Meera, S. Begum, N. Anantharaman. Modification of egg shell and its application in biodiesel production. Journal of Saudi Chemical Society, 18(5) (2014) 702-706.
DOI: 10.1016/j.jscs.2014.02.010
Google Scholar
[11]
N. Ngadi, N.F. Hamdan, O. Hassan, R.T. Jaya. Production of biodiesel from palm oil using egg shell waste as heterogeneous catalyst. Jurnal Teknologi (Sciences & Engineering), 78(9) (2016) 59–63.
DOI: 10.11113/jt.v78.4502
Google Scholar
[12]
A.A. Ayodeji, J. E. Modupe, B. Rasheed, J.M. Ayodele. Data on CaO and eggshell catalysts used for biodiesel production. 19 (2018) 1466-1473.
DOI: 10.1016/j.dib.2018.06.028
Google Scholar
[13]
Z. Wei, C. Xu, B. Li, 2009. Application of waste eggshell as low-cost solid catalyst for biodiesel production. Bioresource Technology, 100(11) 2883-2885.
DOI: 10.1016/j.biortech.2008.12.039
Google Scholar
[14]
S.M. Akaagerger, S.O. Giwa, M. Ibrahim, A. Giwa. Production of Biodiesel from Desert Date Seed Oil. International Journal of ChemTech Research, 9(6) (2016) 453-463.
DOI: 10.4028/www.scientific.net/jera.53.180
Google Scholar
[15]
B. Gutti, S.S. Bamidele, I.M. Bugaje. Characterization and composition of balanite aegyptiaca seed oil and its potential as biodiesel feedstock in Nigeria. Journal of Applied Phytotechnology in Environmental Sanitation, 1(1) (2012) 29-35.
Google Scholar
[16]
C.A. Okia, J. Kwetegyeka, P. Okiror, J.M. Kimondo, Teklehaimanot, Z., Obua, J. Physico-chemical characteristics and fatty acid profile of desert date kernel oil. African Crop Science Journal, 21 (2013) 723-734.
Google Scholar
[17]
M. F. Elkady, A. Zaatout, O. Balbaa. Production of biodiesel from waste vegetable oil via KM micromixer. Journal of Chemistry, 2015 (2015) 1-9.
DOI: 10.1155/2015/630168
Google Scholar
[18]
S. Chongkhong, C. Tongurai, P. Chetpattananondh, C. Bunyakan. Biodiesel production by esterification of palm fatty acid distillate. Biomass Bioenerg., 31 (2007) 563-568.
DOI: 10.1016/j.biombioe.2007.03.001
Google Scholar
[19]
A. Giwa, S.O. Giwa, H. Hapoglu. Adaptive neuro-fuzzy inference systems (ANFIS) modeling of reactive distillation process. ARPN Journal of Engineering and Applied Sciences, 8(7) (2013) 473-479.
Google Scholar
[20]
Giwa, S.O. Giwa. Modelling and simulation of a reactive distillation process for fuel additive production. Journal of Environmental Science, Computer Science and Engineering & Technology, Section C: Engineering & Technology, 5(1) (2016) 63-74.
Google Scholar
[21]
Giwa. PI and PID control of a fuel additive reactive distillation process. ARPN Journal of Engineering and Applied Sciences, 11(11) (2016) 6779-6793.
Google Scholar
[22]
Giwa. Steady-state modeling of n-butyl acetate transesterification process using Aspen Plus: conventional versus integrated, ARPN Journal of Engineering and Applied Sciences, 7(12) (2012) 1555-1564.
Google Scholar
[23]
Giwa. Methyl acetate reactive distillation process modeling, simulation and optimization using Aspen Plus, ARPN Journal of Engineering and Applied Sciences, 8(5) (2013) 386-392.
Google Scholar
[24]
S.O. Giwa, Giwa A, Hapoglu H. Investigating the effects of some parameters on hydrogen sulphide stripping column using Aspen HYSYS. ARPN Journal of Engineering and Applied Sciences, 8(5) (2013) 338-347.
Google Scholar
[25]
A. Giwa, M.A. Ogunware. Modelling, simulation and control of a reactive distillation process for biodiesel production. ABUAD Journal of Engineering Research and Development, 1(1) (2018) 49-60.
Google Scholar
[26]
Giwa, A. Bello, S.O. Giwa. Performance analyses of fatty acids in reactive distillation process for biodiesel production. International Journal of Scientific & Engineering Research, 5(12) (2014) 529-540.
Google Scholar
[27]
Giwa, A. Bello, S.O. Giwa. Artificial neural network modeling of a reactive distillation process for biodiesel production. International Journal of Scientific & Engineering Research, 6(1) (2015) 1175- 1191.
Google Scholar
[28]
Giwa, S.O. Giwa, E.A. Olugbade. Application of Aspen HYSYS process simulator in green energy revolution: a case study of biodiesel production. ARPN Journal of Engineering and Applied Sciences, 13(2) (2018) 569-581.
Google Scholar
[29]
Giwa, S. Karacan. Simulation and optimization of ethyl acetate reactive packed distillation process using Aspen Hysys, The Online Journal of Science and Technology, 2(2) (2012) 57-63.
Google Scholar
[30]
Giwa, S. Karacan. Nonlinear black-box modeling of a reactive distillation process. International Journal of Engineering Research & Technology, 1(7) (2012) 548-557.
Google Scholar
[31]
Giwa, S. Karacan. Decoupling control of a reactive distillation process using Tyreus-Luyben technique. ARPN Journal of Engineering and Applied Sciences, 7(10) (2012) 1263-1272.
Google Scholar
[32]
Giwa, S.O. Giwa. Isopropyl myristate production process optimization using response surface methodology and MATLAB. International Journal of Engineering Research & Technology, 2(1) (2013) 853-862.
Google Scholar
[33]
Giwa, S.O. Giwa. Estimating the optimum operating parameters of olefin metathesis reactive distillation process. ARPN Journal of Engineering and Applied Sciences, 8(8) (2013) 614-624.
Google Scholar
[34]
Giwa, S.O. Giwa, I. Bayram, S. Karacan. Simulations and economic analyses of ethyl acetate productions by conventional and reactive distillation processes using Aspen Plus. International Journal of Engineering Research & Technology, 2(8) (2013) 594-605.
Google Scholar
[35]
Giwa. Solving the dynamic models of reactive packed distillation process using difference formula approaches. ARPN Journal of Engineering and Applied Sciences, 9(2) (2014) 98-108.
Google Scholar
[36]
Giwa. Monothetic Analysis of octene metathesis reactive distillation process. ARPN Journal of Engineering and Applied Sciences, 13(4) (2018) 1251-1264.
Google Scholar
[37]
Giwa, S. Karacan. Modeling and simulation of a reactive packed distillation column using delayed neural networks. Chaotic Modeling and Simulation, 2(1) (2012) 101-108.
Google Scholar
[38]
Giwa, S.O. Giwa. Layer-recurrent neural network modelling of reactive distillation process. Chaotic Modeling and Simulation, 2(4) (2013) 647-656.
Google Scholar
[39]
S.O. Giwa, A.A. Adeyi, A. Giwa. Application of model predictive control to renewable energy development via reactive distillation process. International Journal of Engineering Research in Africa, 27 (2016) 95-110.
DOI: 10.4028/www.scientific.net/jera.27.95
Google Scholar