Removal of Hg (II) Ions from Industrial Wastewaters Using Aluminum Sulfate

Article Preview

Abstract:

The main purpose of this study was first to investigate the removal of Hg(II) ions from industrial wastewaters by coagulation-flocculation with aluminum sulfate, secondly to understand the contribution of some parameters including the coagulant dose, pH, and the addition of adjuvant (activated carbons and lime). Jar-test experiments were carried out on wastewater samples containing mercury from the industrial area of Biskra (BIWW: Biskra industrial wastewater, C0= 1.01 mg/L) and Tizi Ouzou (TOIWW: Tizi Ouzou industrial wastewater, C0= 1.81 mg/L).The maximum elimination of mercury at ambient temperature was 49% and 58% that were obtained with concentrations of 180 mg/L and 200 mg/L of aluminum sulfate at a pH close to 7 for both Tizi Ouzou and Biskra samples, respectively. The obtained results showed that the removal efficiency of mercury ions is improved by the addition of adjuvant (activated carbon and lime). The removal efficiency of Hg (II) ions increased with increasing lime and activated carbon masses, experiments results indicated that the yield increased with the increase in the dose of the adjuvant to reach a maximum of 82.89% (TOIWW) and 83.38% (BIWW).The experiments were conducted to test the ability of coupling coagulation-flocculation to adsorption. It was verified that coupling was more efficient in the removal of Hg(II) ions from industrial wastewater than coagulation-flocculation alone. Almost complete removal (99.42) of Hg was obtained by coupling coagulation-flocculation and adsorption on powdered activated carbon.Accordingly, it is believed that coupling coagulation-flocculation and adsorption are practical for utilization in industrial wastewater treatment for mercury removal.

You might also be interested in these eBooks

Info:

Pages:

200-211

Citation:

Online since:

March 2021

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Pirrone N., Cinnirella S., Feng X., Finkelman R.B., Friedli H.R., Leaner J., Mason R., Mukherjee A.B., Stracher G.B., Streets D.G., Telmer K.,(2010). Global mercury emissions to the atmosphere from anthropogenic and natural sources", Atmospheric Chemical Physics, 10, pp.5951-5964.

DOI: 10.5194/acp-10-5951-2010

Google Scholar

[2] Santana A.J., dos Santos W.N.L., Silva L.O.B., das Virgens C.F.(2016). Removal of mercury (II) ions in aqueous solution using the peel biomass of Pachira aquatica: kinetics and adsorption equilibrium studies", Environmental Monitoring and Assessment, 188, pp.293-307.

DOI: 10.1007/s10661-016-5266-7

Google Scholar

[3] Wang.,. Kim D., Dionysiou D.D., Sorial G., Timberlake D.(2004). Sources and remediation for mercury contamination in aquatic systems – a literature review, Environmental Pollution, 131,pp.323-336.

DOI: 10.1016/j.envpol.2004.01.010

Google Scholar

[4] Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council", Official Journal of the European Communities, L 348, 2008, p.84–97.

Google Scholar

[5] Wen Liang., Manlin Li., Shuncheng Jiang., Amjad Ali., Zengqiang Zhang., Ronghua Li. (2019). Polyamine-co-2, 6-diaminopyridine covalently bonded on chitosan for the adsorptive removal of Hg(II) ions from aqueous solution. International Journal of Biological Macromolecules 130, p.853–862.

DOI: 10.1016/j.ijbiomac.2019.03.007

Google Scholar

[6] Masmoudi T. (2018). Incidence de la minéralisation sur l'élimination du mercure par deux procédés physico-chimiques. Application à deux effluents résiduaires. Thèse de doctorat en sciences hydraulique. Université de Biskra. Algérie.

Google Scholar

[7] Hadi P., To M.H., Hui C.W., Ki Lin. C.S., McKay G.,(2015). Aqueous Mercury Adsorption by Activated Carbons, Water Research, Vol 73, p.37–55.

DOI: 10.1016/j.watres.2015.01.018

Google Scholar

[8] Bandaru, N.M., Reta, N., Dalal, H., Ellis, A. V, Shapter, J., Voelcker, N.H. (2013). Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes. J. Hazard. Mater. 261, 534–41.

DOI: 10.1016/j.jhazmat.2013.07.076

Google Scholar

[9] Cui, H., Qian, Y., Li, Q., Wei, Z., Zhai, J.(2013). Fast removal of Hg(II) ions from aqueous solution by amine-modified attapulgite. Appl. Clay Sci. 72, p.84–90.

DOI: 10.1016/j.clay.2013.01.003

Google Scholar

[10] Di Natale, F., Erto, A., Lancia, A., Musmarra, D.(2011). Mercury adsorption on granular activated carbon in aqueous solutions containing nitrates and chlorides. J. Hazard. Mater. 192, 1842–50.

DOI: 10.1016/j.jhazmat.2011.07.021

Google Scholar

[11] Li, Z., Wu, L., Liu, H., Lan, H., Qu, J., 2013. Improvement of aqueous mercury adsorption on activated coke by thiol-functionalization. Chem. Eng. J. 228, p.925–934.

DOI: 10.1016/j.cej.2013.05.063

Google Scholar

[12] Mondal, D.K., Nandi, B.K., Purkait, M.K., 2013. Removal of mercury (II) from aqueous solution using bamboo leaf powder: Equilibrium, thermodynamic and kinetic studies. J. Environ. Chem. Eng. 1, 891–898.

DOI: 10.1016/j.jece.2013.07.034

Google Scholar

[13] Anirudhan, T.S., Divya, L., Ramachandran, M.(2008). Mercury (II) removal from aqueous solutions and wastewaters using a novel cation exchanger derived from coconut coir pith and its recovery. J. Hazard. Mater. 157, 620–7.

DOI: 10.1016/j.jhazmat.2008.01.030

Google Scholar

[14] Lloyd-Jones, P.J., Rangel-Mendez, J.R., Streat, M.(2004). Mercury Sorption from queous Solution by Chelating Ion Exchange Resins, Activated Carbon and a Biosorbent. Process Saf. Environ. Prot. 82, p.301–311.

DOI: 10.1205/095758204323162328

Google Scholar

[15] Henneberry, Y.K., Kraus, T.E.C., Fleck, J. a, Krabbenhoft, D.P., Bachand, P.M., Horwath, W.R.(2011). Removal of inorganic mercury and methylmercury from surface waters following coagulation of dissolved organic matter with metal-based salts. Sci. Total Environ. 409, 631–7.

DOI: 10.1016/j.scitotenv.2010.10.030

Google Scholar

[16] Nanseu-Njiki, C.P., Tchamango, S.R., Ngom, P.C., Darchen, A., Ngameni, E., (2009). Mercury(II) removal from water by electrocoagulation using aluminium and iron electrodes. J. Hazard. Mater. 168, 1430–6.

DOI: 10.1016/j.jhazmat.2009.03.042

Google Scholar

[17] Blue, L.Y., Jana, P., Atwood, D.A.(2010). Aqueous mercury precipitation with the synthetic dithiolate, BDTH2. Fuel 89, p.1326–1330.

DOI: 10.1016/j.fuel.2009.10.031

Google Scholar

[18] Hutchison, A., Atwood, D., Santilliann-Jiminez, Q.E.(2008). The removal of mercury from water by open chain ligands containing multiple sulfurs. J. Hazard. Mater. 156, 458–65.

DOI: 10.1016/j.jhazmat.2007.12.042

Google Scholar

[19] Barron-Zambrano, J., Laborie, S., Viers, P., Rakib, M., Durand, G.(2002). Mercury removal from aqueous solutions by complexation—ultrafiltration. Desalination 144,p.201–206.

DOI: 10.1016/s0011-9164(02)00312-0

Google Scholar

[20] Han, D.S., Orillano, M., Khodary, A., Duan, Y., Batchelor, B., Abdel-Wahab, A. (2014). Reactive iron sulfide (FeS)-supported ultrafiltration for removal of mercury (Hg(II)) from water. Water Res. 53, 310–21.

DOI: 10.1016/j.watres.2014.01.033

Google Scholar

[21] López-Muñoz, M.J., Aguado, J., Arencibia, a., Pascual, R.(2011). Mercury removal from aqueous solutions of HgCl2 by heterogeneous photocatalysis with TiO2. Appl. Catal. B Environ. 104, 220–228.

DOI: 10.1016/j.apcatb.2011.03.029

Google Scholar

[22] De la Fournière, E.M., Leyva, A.G., Gautier, E.A., Litter, M.I.(2007). Treatment of phenylmercury salts by heterogeneous photocatalysis over TiO(2). Chemosphere 69, 682–8.

DOI: 10.1016/j.chemosphere.2007.05.042

Google Scholar

[23] Byrne, H.E., Mazyck, D.W.(2009). Removal of trace level aqueous mercury by adsorption and photocatalysis on silica-titania composites. J. Hazard. Mater. 170,915–9.

DOI: 10.1016/j.jhazmat.2009.05.055

Google Scholar

[24] Rodier J., B. Legube, N. Merlet et R. Brunet (2009). L'analyse de l'eau : eaux naturelles, eaux résiduaires, eaux de mer. Collection : Technique et Ingénierie, DUNOD, 9e édition, Paris, France, 1600 p.

DOI: 10.51257/a-v1-w110

Google Scholar

[25] Letterman R.D., Vanderbrook S.G. (1983). Effect of solution chemistry on coagulation with hydrolyzed Al (III) signification of sulfate ion and pH. Water Res., 17,95-204.

DOI: 10.1016/0043-1354(83)90100-8

Google Scholar

[26] Ullruich S.M., Tanton T.W., Abdrasthistova S.A. (2001). Mercury in the aquatic environment: a review of factors affecting methylation, Crit. Rev. Environ. Sci. Technol. 31, 241–293.

Google Scholar

[27] A. Alinsafi, M. Khemis, M.N. Pons, J.P. Leclerc, A. Yaacoubi, A. Benhammou, A. Nejmeddine, Electrocoagulation of reactive textile dyes and textile wastewater, Chem. Eng. Proc. 44 (2005) 461–470.

DOI: 10.1016/s0255-2701(04)00153-9

Google Scholar

[28] Cousin S. (1980). Contribution à l'amélioration de la qualité des eaux destinées à l'alimentation humaine par utilisation d'argiles au cours des traitements de floculation décantation, Thèse de Doctorat 3ème cycle, Université Paris V, France.

Google Scholar

[29] Degrémont. (2005). Mémento technique de l'eau. Degrémont, Paris, France, 1718 p.

Google Scholar

[30] Guesbaya N. (1998). Élimination des composés organiques par le procédé de coagulation floculation. Mémoire de maîtrise, Univ. Biskra, Algérie, 194.

Google Scholar

[31] Delacote C. (2005). Etudes électro-analytiques de processus de transfert de matière et de charge au sein de silices mésoporeuses organiquement modifiées, Ph.D. Thesis, Nancy, France.

Google Scholar

[32] Hecini, L. & Achour, S. (2014). Coagulation-floculation au sulfate d'aluminium de composés organiques phénoliques et effet de sels de calcium et de magnésium. Revue des sciences de l'eau/ Journal of Water Science, 27 (3), 271–280. https://doi.org/10.7202/1027810ar.

DOI: 10.7202/1027810ar

Google Scholar

[33] Nanseu-Njiki. C.P., Tchamango. S.R., Philippe Claude Ngom. P.C, Darchen. A., Ngameni. E.(2009). Mercury(II) removal from water by electro-coagulation using aluminium and iron electrodes. Journal of Hazardous Materials 168, 1430–1436.

DOI: 10.1016/j.jhazmat.2009.03.042

Google Scholar

[34] Engil I.A. S., Özacar M.(2006). Treatment of dairy wastewaters by electrocoagulation using mild steel electrodes, J. Hazard. Mater. B 137, 1197–1205.

DOI: 10.1016/j.jhazmat.2006.04.009

Google Scholar

[35] Youcef L. Achour S. (2005). Elimination des phosphates par des procédés physico-chimiques. Larhyss Journal, n° 04, pp.129-140.

Google Scholar

[36] Beaudry J.P. (1984) .Traitement des eaux, Ed. Le Griff on d'argile INC, Canada. pp.27-41.

Google Scholar

[37] Bouchahm N., Hecini L et Wahida Kherifi. (2016). Adoucissement des eaux souterraines de la région orientale du Sahara septentrional algérien : cas de la région de Biskra. Revue des sciences de l,eau 291: 37–48.

DOI: 10.7202/1035715ar

Google Scholar

[38] Xiaoming M., Liping L., Lin Y., Caiyun S., Kui W., Shibao Y., Jianguo Z. (2012). Adsorption of heavy metal ions using hierarchical CaCO3–maltose meso/macroporous hybrid materials: Adsorption isotherms and kinetic studies. Journal of Hazardous Materials 209–210: 467–477.

DOI: 10.1016/j.jhazmat.2012.01.054

Google Scholar

[39] Eligwe C.A., Okolue N.B., Nwambu C.O., Nwoko C.I.A., (1999). Adsorption thermodynamics and kinetics of mercury (II), cadmium (II) and lead (II) on lignite. Chem. Eng. Technol, Vol.22, Issue 1, p.45–49.

DOI: 10.1002/(sici)1521-4125(199901)22:1<45::aid-ceat45>3.0.co;2-d

Google Scholar

[40] Abid B.A., Brbooti M.M., and Al-Shuwaiki N.M. (2011). Removal of heavy metals using chemicals precipitation.Eng. Technol. J. 29(3): pp.595-612.

Google Scholar

[41] Benalia M C., Youcef L. and Achour S. (2018). Etude de l'élimination du cuivre par précipitation chimique. 1er Séminaire Maghrébin sur l'Eau et l'Environnement dans les Zones Arides (SMEEZA'1) : Eau et Santé, 23- 25 Avril, Ouargla, Algérie.

DOI: 10.22453/lsj-020.3.413-429

Google Scholar

[42] Brooks C.S. (1986). Metal recovery from industrial wastes.The journal of the minerals, metals & materials society (TMS), vol. 38, n°7, pp.50-57.

Google Scholar

[43] Tchobanoglous G., Burton F. L.and Stensel H.D.(2003).Wastewater Engeneering.Treatment and reuse, Fourth Edition, Edition McGraw-Hill.

Google Scholar

[44] JORA. (2009). Journal officiel de la république algérienne n°36, Décret exécutif –N°09-209 du 17 Joumadaethania 1430 correspondant au 11 Juin (2009).

Google Scholar

[45] JORA. (2011). Journal officiel de la république algérienne n°34, Décret exécutif du 17 Rajab 1432 correspondant au 19 Juin.

Google Scholar