[1]
Pirrone N., Cinnirella S., Feng X., Finkelman R.B., Friedli H.R., Leaner J., Mason R., Mukherjee A.B., Stracher G.B., Streets D.G., Telmer K.,(2010). Global mercury emissions to the atmosphere from anthropogenic and natural sources", Atmospheric Chemical Physics, 10, pp.5951-5964.
DOI: 10.5194/acp-10-5951-2010
Google Scholar
[2]
Santana A.J., dos Santos W.N.L., Silva L.O.B., das Virgens C.F.(2016). Removal of mercury (II) ions in aqueous solution using the peel biomass of Pachira aquatica: kinetics and adsorption equilibrium studies", Environmental Monitoring and Assessment, 188, pp.293-307.
DOI: 10.1007/s10661-016-5266-7
Google Scholar
[3]
Wang.,. Kim D., Dionysiou D.D., Sorial G., Timberlake D.(2004). Sources and remediation for mercury contamination in aquatic systems – a literature review, Environmental Pollution, 131,pp.323-336.
DOI: 10.1016/j.envpol.2004.01.010
Google Scholar
[4]
Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council", Official Journal of the European Communities, L 348, 2008, p.84–97.
Google Scholar
[5]
Wen Liang., Manlin Li., Shuncheng Jiang., Amjad Ali., Zengqiang Zhang., Ronghua Li. (2019). Polyamine-co-2, 6-diaminopyridine covalently bonded on chitosan for the adsorptive removal of Hg(II) ions from aqueous solution. International Journal of Biological Macromolecules 130, p.853–862.
DOI: 10.1016/j.ijbiomac.2019.03.007
Google Scholar
[6]
Masmoudi T. (2018). Incidence de la minéralisation sur l'élimination du mercure par deux procédés physico-chimiques. Application à deux effluents résiduaires. Thèse de doctorat en sciences hydraulique. Université de Biskra. Algérie.
Google Scholar
[7]
Hadi P., To M.H., Hui C.W., Ki Lin. C.S., McKay G.,(2015). Aqueous Mercury Adsorption by Activated Carbons, Water Research, Vol 73, p.37–55.
DOI: 10.1016/j.watres.2015.01.018
Google Scholar
[8]
Bandaru, N.M., Reta, N., Dalal, H., Ellis, A. V, Shapter, J., Voelcker, N.H. (2013). Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes. J. Hazard. Mater. 261, 534–41.
DOI: 10.1016/j.jhazmat.2013.07.076
Google Scholar
[9]
Cui, H., Qian, Y., Li, Q., Wei, Z., Zhai, J.(2013). Fast removal of Hg(II) ions from aqueous solution by amine-modified attapulgite. Appl. Clay Sci. 72, p.84–90.
DOI: 10.1016/j.clay.2013.01.003
Google Scholar
[10]
Di Natale, F., Erto, A., Lancia, A., Musmarra, D.(2011). Mercury adsorption on granular activated carbon in aqueous solutions containing nitrates and chlorides. J. Hazard. Mater. 192, 1842–50.
DOI: 10.1016/j.jhazmat.2011.07.021
Google Scholar
[11]
Li, Z., Wu, L., Liu, H., Lan, H., Qu, J., 2013. Improvement of aqueous mercury adsorption on activated coke by thiol-functionalization. Chem. Eng. J. 228, p.925–934.
DOI: 10.1016/j.cej.2013.05.063
Google Scholar
[12]
Mondal, D.K., Nandi, B.K., Purkait, M.K., 2013. Removal of mercury (II) from aqueous solution using bamboo leaf powder: Equilibrium, thermodynamic and kinetic studies. J. Environ. Chem. Eng. 1, 891–898.
DOI: 10.1016/j.jece.2013.07.034
Google Scholar
[13]
Anirudhan, T.S., Divya, L., Ramachandran, M.(2008). Mercury (II) removal from aqueous solutions and wastewaters using a novel cation exchanger derived from coconut coir pith and its recovery. J. Hazard. Mater. 157, 620–7.
DOI: 10.1016/j.jhazmat.2008.01.030
Google Scholar
[14]
Lloyd-Jones, P.J., Rangel-Mendez, J.R., Streat, M.(2004). Mercury Sorption from queous Solution by Chelating Ion Exchange Resins, Activated Carbon and a Biosorbent. Process Saf. Environ. Prot. 82, p.301–311.
DOI: 10.1205/095758204323162328
Google Scholar
[15]
Henneberry, Y.K., Kraus, T.E.C., Fleck, J. a, Krabbenhoft, D.P., Bachand, P.M., Horwath, W.R.(2011). Removal of inorganic mercury and methylmercury from surface waters following coagulation of dissolved organic matter with metal-based salts. Sci. Total Environ. 409, 631–7.
DOI: 10.1016/j.scitotenv.2010.10.030
Google Scholar
[16]
Nanseu-Njiki, C.P., Tchamango, S.R., Ngom, P.C., Darchen, A., Ngameni, E., (2009). Mercury(II) removal from water by electrocoagulation using aluminium and iron electrodes. J. Hazard. Mater. 168, 1430–6.
DOI: 10.1016/j.jhazmat.2009.03.042
Google Scholar
[17]
Blue, L.Y., Jana, P., Atwood, D.A.(2010). Aqueous mercury precipitation with the synthetic dithiolate, BDTH2. Fuel 89, p.1326–1330.
DOI: 10.1016/j.fuel.2009.10.031
Google Scholar
[18]
Hutchison, A., Atwood, D., Santilliann-Jiminez, Q.E.(2008). The removal of mercury from water by open chain ligands containing multiple sulfurs. J. Hazard. Mater. 156, 458–65.
DOI: 10.1016/j.jhazmat.2007.12.042
Google Scholar
[19]
Barron-Zambrano, J., Laborie, S., Viers, P., Rakib, M., Durand, G.(2002). Mercury removal from aqueous solutions by complexation—ultrafiltration. Desalination 144,p.201–206.
DOI: 10.1016/s0011-9164(02)00312-0
Google Scholar
[20]
Han, D.S., Orillano, M., Khodary, A., Duan, Y., Batchelor, B., Abdel-Wahab, A. (2014). Reactive iron sulfide (FeS)-supported ultrafiltration for removal of mercury (Hg(II)) from water. Water Res. 53, 310–21.
DOI: 10.1016/j.watres.2014.01.033
Google Scholar
[21]
López-Muñoz, M.J., Aguado, J., Arencibia, a., Pascual, R.(2011). Mercury removal from aqueous solutions of HgCl2 by heterogeneous photocatalysis with TiO2. Appl. Catal. B Environ. 104, 220–228.
DOI: 10.1016/j.apcatb.2011.03.029
Google Scholar
[22]
De la Fournière, E.M., Leyva, A.G., Gautier, E.A., Litter, M.I.(2007). Treatment of phenylmercury salts by heterogeneous photocatalysis over TiO(2). Chemosphere 69, 682–8.
DOI: 10.1016/j.chemosphere.2007.05.042
Google Scholar
[23]
Byrne, H.E., Mazyck, D.W.(2009). Removal of trace level aqueous mercury by adsorption and photocatalysis on silica-titania composites. J. Hazard. Mater. 170,915–9.
DOI: 10.1016/j.jhazmat.2009.05.055
Google Scholar
[24]
Rodier J., B. Legube, N. Merlet et R. Brunet (2009). L'analyse de l'eau : eaux naturelles, eaux résiduaires, eaux de mer. Collection : Technique et Ingénierie, DUNOD, 9e édition, Paris, France, 1600 p.
DOI: 10.51257/a-v1-w110
Google Scholar
[25]
Letterman R.D., Vanderbrook S.G. (1983). Effect of solution chemistry on coagulation with hydrolyzed Al (III) signification of sulfate ion and pH. Water Res., 17,95-204.
DOI: 10.1016/0043-1354(83)90100-8
Google Scholar
[26]
Ullruich S.M., Tanton T.W., Abdrasthistova S.A. (2001). Mercury in the aquatic environment: a review of factors affecting methylation, Crit. Rev. Environ. Sci. Technol. 31, 241–293.
Google Scholar
[27]
A. Alinsafi, M. Khemis, M.N. Pons, J.P. Leclerc, A. Yaacoubi, A. Benhammou, A. Nejmeddine, Electrocoagulation of reactive textile dyes and textile wastewater, Chem. Eng. Proc. 44 (2005) 461–470.
DOI: 10.1016/s0255-2701(04)00153-9
Google Scholar
[28]
Cousin S. (1980). Contribution à l'amélioration de la qualité des eaux destinées à l'alimentation humaine par utilisation d'argiles au cours des traitements de floculation décantation, Thèse de Doctorat 3ème cycle, Université Paris V, France.
Google Scholar
[29]
Degrémont. (2005). Mémento technique de l'eau. Degrémont, Paris, France, 1718 p.
Google Scholar
[30]
Guesbaya N. (1998). Élimination des composés organiques par le procédé de coagulation floculation. Mémoire de maîtrise, Univ. Biskra, Algérie, 194.
Google Scholar
[31]
Delacote C. (2005). Etudes électro-analytiques de processus de transfert de matière et de charge au sein de silices mésoporeuses organiquement modifiées, Ph.D. Thesis, Nancy, France.
Google Scholar
[32]
Hecini, L. & Achour, S. (2014). Coagulation-floculation au sulfate d'aluminium de composés organiques phénoliques et effet de sels de calcium et de magnésium. Revue des sciences de l'eau/ Journal of Water Science, 27 (3), 271–280. https://doi.org/10.7202/1027810ar.
DOI: 10.7202/1027810ar
Google Scholar
[33]
Nanseu-Njiki. C.P., Tchamango. S.R., Philippe Claude Ngom. P.C, Darchen. A., Ngameni. E.(2009). Mercury(II) removal from water by electro-coagulation using aluminium and iron electrodes. Journal of Hazardous Materials 168, 1430–1436.
DOI: 10.1016/j.jhazmat.2009.03.042
Google Scholar
[34]
Engil I.A. S., Özacar M.(2006). Treatment of dairy wastewaters by electrocoagulation using mild steel electrodes, J. Hazard. Mater. B 137, 1197–1205.
DOI: 10.1016/j.jhazmat.2006.04.009
Google Scholar
[35]
Youcef L. Achour S. (2005). Elimination des phosphates par des procédés physico-chimiques. Larhyss Journal, n° 04, pp.129-140.
Google Scholar
[36]
Beaudry J.P. (1984) .Traitement des eaux, Ed. Le Griff on d'argile INC, Canada. pp.27-41.
Google Scholar
[37]
Bouchahm N., Hecini L et Wahida Kherifi. (2016). Adoucissement des eaux souterraines de la région orientale du Sahara septentrional algérien : cas de la région de Biskra. Revue des sciences de l,eau 291: 37–48.
DOI: 10.7202/1035715ar
Google Scholar
[38]
Xiaoming M., Liping L., Lin Y., Caiyun S., Kui W., Shibao Y., Jianguo Z. (2012). Adsorption of heavy metal ions using hierarchical CaCO3–maltose meso/macroporous hybrid materials: Adsorption isotherms and kinetic studies. Journal of Hazardous Materials 209–210: 467–477.
DOI: 10.1016/j.jhazmat.2012.01.054
Google Scholar
[39]
Eligwe C.A., Okolue N.B., Nwambu C.O., Nwoko C.I.A., (1999). Adsorption thermodynamics and kinetics of mercury (II), cadmium (II) and lead (II) on lignite. Chem. Eng. Technol, Vol.22, Issue 1, p.45–49.
DOI: 10.1002/(sici)1521-4125(199901)22:1<45::aid-ceat45>3.0.co;2-d
Google Scholar
[40]
Abid B.A., Brbooti M.M., and Al-Shuwaiki N.M. (2011). Removal of heavy metals using chemicals precipitation.Eng. Technol. J. 29(3): pp.595-612.
Google Scholar
[41]
Benalia M C., Youcef L. and Achour S. (2018). Etude de l'élimination du cuivre par précipitation chimique. 1er Séminaire Maghrébin sur l'Eau et l'Environnement dans les Zones Arides (SMEEZA'1) : Eau et Santé, 23- 25 Avril, Ouargla, Algérie.
DOI: 10.22453/lsj-020.3.413-429
Google Scholar
[42]
Brooks C.S. (1986). Metal recovery from industrial wastes.The journal of the minerals, metals & materials society (TMS), vol. 38, n°7, pp.50-57.
Google Scholar
[43]
Tchobanoglous G., Burton F. L.and Stensel H.D.(2003).Wastewater Engeneering.Treatment and reuse, Fourth Edition, Edition McGraw-Hill.
Google Scholar
[44]
JORA. (2009). Journal officiel de la république algérienne n°36, Décret exécutif –N°09-209 du 17 Joumadaethania 1430 correspondant au 11 Juin (2009).
Google Scholar
[45]
JORA. (2011). Journal officiel de la république algérienne n°34, Décret exécutif du 17 Rajab 1432 correspondant au 19 Juin.
Google Scholar