[1]
E.G. S. Junior, H.P EuclésioVictor, R.J. Oselys, A. H. Z Néstor, D.C. V. Maria, Potential of Virginia-Type Peanut (Arachis Hypogaea L) as Feedstock for Biodiesel Production. Industrial Crops and Products. 89 (2016) 448–454.
DOI: 10.1016/j.indcrop.2016.04.050
Google Scholar
[2]
A. Siamak, O. Hamid, S.K. Dong, A Review on Synthesis of Alkoxymethyl Furfural, A Biofuel Candidate. Renewable and Sustainable Energy Reviews. 71 (2016) 908-926.
DOI: 10.1016/j.rser.2016.12.118
Google Scholar
[3]
Vassilev, V. Stanislav, G. V. Christina, S. Vassilev. Advantages and Disadvantages of Composition and Properties of Biomass in Comparison with Coal: An Overview. Fuel. 158 (2015) 330-350.
DOI: 10.1016/j.fuel.2015.05.050
Google Scholar
[4]
W. Jianjian, L. Xiaohui, H. Bicheng, L. Guanzhong, W. Yanqin, Efficient Catalytic Conversion of Lignocellulosic Biomass into Renewable Liquid Biofuels via Furan Derivatives. The Royal Society of Chemistry. 4. 59 (2014) 31101-31107.
DOI: 10.1039/c4ra04900d
Google Scholar
[5]
M.J. Climent, C. Avelino, I. Sara, Conversion of Biomass Platform Molecules into Fuel Addictives and Liquid Hydrocarbon Fuels. Green Chem. 16 (2014) 516-547.
DOI: 10.1039/c3gc41492b
Google Scholar
[6]
O.E. Onyelucheya, J.T. Nwabanne, C. Onyelucheya, Mary, O.E. Adeyemo, Acid Hydrolysis of Cassava Peels. International Journal of Scientific & Technology Research. 5 (2016) 01. 2277-8616.
Google Scholar
[7]
M. Gabriel, A.M. Juan, I. Jose, P. Marta, Advanced Biofuels from Lignocllulosic Biomass. J. Adv. Chem. Eng. 4 (2014) 1. 1-3.
Google Scholar
[8]
R.G. Witantri, T. Purwoko, Sunarto, E. Mahajoeno, Bioethanol Production By Utilizing Cassava Peels Waste Through Enzymatic And Microbiological Hydrolysis. Earth and Environmental Science. 75 (2017)11- 6.
DOI: 10.1088/1755-1315/75/1/012014
Google Scholar
[9]
B. Saha, M.A.O Mahdi,. Advances in 5-Hidroxymethylfurfural Production from Biomass in Biphasic Solvents. Green. Chem. 16 (2014) 24-38.
Google Scholar
[10]
V. Choudhary, H.M Samir, H. Christopher, A. Andzej, N. Vladimiros, S. Nebojsa, A.I Marinkovic, S.L Frenkel, D.G Sandler, Vlachos, Insights into the Interplay of Lewis and Brønsted Acid Catalysts in Glucose and Fructose Conversion to 5-(Hydroxymethyl)furfural and Levulinic Acid in Aqueous Media. Journal of The American Chemical Society. 135 (2013) 3997-4006.
DOI: 10.1021/ja3122763
Google Scholar
[11]
R. Manurung, Taslim, A.G.A Siregar, Deep Eutectic Solvents Based Choline Chloride for Enzymatic Biodiesel Production from Degumming Palm Oil. Asian Journal of Chemistry. 32 4 (2020) 733-738.
DOI: 10.14233/ajchem.2020.22193
Google Scholar
[12]
A.A. Assanosi, M.F. Mohamed, W. Joseph, A.D. Bushra, A Facile Acidic Choline Chloride-P-TSA DES-Catalysed Dehydration of Fructose to 5 Hydroxymethylfurfural. RSC Adv. 4 (2014) 39359-39364.
DOI: 10.1039/c4ra07065h
Google Scholar
[13]
A. Ahmad, G. Nagoor, A. Dachyar, M.N. Enas, Parveen J. Bioresource Technology. S0960-8524(15) 00077-2.
Google Scholar
[14]
J. Naser, F. Mjalli, B. Jibril, S. Al-Hatmi, Z. Gano, International Journal of Chemical Engineering and Applications. 4 (2013) 114-118.
DOI: 10.7763/ijcea.2013.v4.275
Google Scholar
[15]
A.M. Popescu, C. Donath, V. Constantin, Density, Viscosity And Electrical Conductivity Of Three Choline Chloride Based Ionic Liquids. Bulgarian Chemical Communications. 46. 3 (2014) 452-457.
Google Scholar
[16]
M. Hayyan, A. Tayeb, A.H Mohd, A. Mahammed, A. Hakim, H. Adeeb, 2015. Triethylene Glycol Based Deep Eutectic Solvents and Their Physical Properties. Journal of the Taiwan Institute of Chemical Engineers. 50 (2015) 24-30.
DOI: 10.1016/j.jtice.2015.03.001
Google Scholar
[17]
K.K. Koon, S. Kamaliah, Novel Manganese (II) – Based Deep Eutectic Solvents: Synthesis And Physical Properties Analysis. Chinese Chemical Letters. 26. 10 (2015) 1311-1314.
DOI: 10.1016/j.cclet.2015.05.049
Google Scholar
[18]
D. Rosa, M. Silvia, M. Jose, M. Campos, L. Jose, G. Fierro, Optimization of the process of chemical hydrolysis of cellulose to glucose. Cellulose. 21 (2014) 4: 2397-2407.
DOI: 10.1007/s10570-014-0280-9
Google Scholar
[19]
L. Pavia, Donald, M. Gary, Lampman, B. geotrge S. Kriz, Ïntroduction to Spectroscopy. Third Edition. Thomson Learning : Washington. 2001 page 24-61.
Google Scholar
[20]
G. Farana, R.S. Mohammad, M.H. Shadbad, Effect of pH and Storage Temperature on 5-(Hydroxymethyl) Furfural (5-HMF) Formation in USP Syrup Preparation. Pharmaceutical Sciences. 21 (2015) 1-5.
DOI: 10.15171/ps.2015.09
Google Scholar
[21]
A. Verma, S.N. Pandeya, S. Shinha, Synthesis and Biologycal Activity of Furan Derivatives. IJRAP. 2. 4 (2011) 1110-1116.
Google Scholar
[22]
J. Teng, M. Hao, W. Furong, W. Lefu, X. Li, A Facile and Eco-Effective Catalytic System For Synthesis of 5-Hydroxymethylfurfural from Glucose. Bio Resources. 11 (2016) 2152-2165.
Google Scholar
[23]
Z. Miao, L. Kai, Z. Li, J. Yetao, Z. Xianhai, Xing, Y.S. Lu, L. Lin, Green Process for Production of 5-Hydroxymethylfurfural from Carbohydrates with High Purity in Deep Eutectic Solvents. Industrial Crops and Products. 99 (2017) 1-6.
DOI: 10.1016/j.indcrop.2017.01.027
Google Scholar
[24]
J. Garcia, Alvarrez, Deep Eutectic Solvents: Environmentally Friendly Media for Metal-Catalyzed Organic Reactions. American Chemical Society. 1186 (2014) 3 37-52.
DOI: 10.1021/bk-2014-1186.ch003
Google Scholar
[25]
M. Zuo, K. Le, Z. Li, Y. Jiang, X. Zeng, X. Tang, Y. Sun, L. Lin, Green process for production of 5-hydroxymethylfurfural from carbohydrates with high purity in deep eutectic solvents. Industrial Crops and Products 99 (2017) 1–6.
DOI: 10.1016/j.indcrop.2017.01.027
Google Scholar
[26]
J. Liu, Y. Tang, K. Wu, C. Bi, Q. Cui, Conversion of Fructose into 5-hydroxymethylfurfural (HMF) and Its Derivatives Promoted By Inorganic Salt in Alcohol. Carbohydrate Research. 350 (2012) 20-24.
DOI: 10.1016/j.carres.2011.12.006
Google Scholar
[27]
C.P. Li, D. Li, S.S. Zou, Z. Li, J.M. Yin, A.L. Wang, Y.N. Cui, Z.L. Yao, Q. Zhao, Extraction desulfurization process of fuels with ammonium-based deep eutectic solvents.Green Chemistry. 15 (2013) 10. 2793-2799.
DOI: 10.1039/c3gc41067f
Google Scholar
[28]
Q. Zhao, S. Zhong, W. Shengtian, H. Guohui, W. Xiaohong, J. Zijiang, 2014. Conversion Of Highly Concentrated Fructose Into 5-Hydroxymethylfurfural By Acid-Base Bifunctional HPA Nanocatalysts Induced By Choline Chloride. RSC Advances. 4 (2014) 63055-6306.
DOI: 10.1039/c4ra10121a
Google Scholar
[29]
P.T. Asbjørn, R. Rolf, G. Thomas, P. Sven, M.W. John, Synthesis of 5-hydroxymethylfurfural (HMF) by Acid Catalyzed Dehydration of Glucose–Fructose Mixtures. Chemical Engineering Journal. 273 (2015) 455-464.
DOI: 10.1016/j.cej.2015.03.094
Google Scholar
[30]
Q. Jing, X. Lu, Kinetics of Non-catalyzed Decomposition of Glucose in High-temperature Liquid Water. Chinese Journal of Chemical Engineering. 16 (2008) 6. 890-894.
DOI: 10.1016/s1004-9541(09)60012-4
Google Scholar
[31]
Z. Luxin, G. Xi, Z. Chen, Z. Qi, W. Xiaochang, Enhanced formation of 5-HMF from glucose using a highly selective and stable SAPO3 4 Catalyst. Chemical Engineering Journal. 307 (2016) 877-883.
DOI: 10.1016/j.cej.2016.09.003
Google Scholar