Demand Forecasting Application with Regression and IoT Based Inventory Management System: A Case Study of a Semiconductor Manufacturing Company

Article Preview

Abstract:

The accuracy of demand forecasting has a significant impact on the supply chain system's performance, which in turn has a major effect on company performance. Accurate forecasting will allow the organization to make the best use of its resources. The synchronization of customer orders to support production is critical for on-time order fulfillment. However, In fact many organizations report that their forecasting method is not working as effectively as they had hoped because orders regularly alter due to client demands. The purpose of this paper is to present an Internet of Things (IoT)-based inventory management system (IMS) that combines a causal method of multiple linear regressions (MLR) with genetic algorithms (GA) to improve the accuracy of demand forecasting in the future period by the customer as closely as feasible and enable smart inventory for Industry 4.0. Based on the data gathered from a semiconductor company that specializes in low-volume, high-mix contract manufacturing equipment and services integration, the suggested IoT-based IMS indicates that inventory productivity and efficiency could be enhanced, and it is resilient to order fluctuation.

You might also be interested in these eBooks

Info:

Pages:

189-210

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. P. de Barros, C. S. Ishikiriyama, R. C. Peres, et C. F. S. Gomes, « Processes and Benefits of the Application of Information Technology in Supply Chain Management: An Analysis of the Literature », Procedia Computer Science, vol. 55, p.698‑705, janv. 2015,.

DOI: 10.1016/j.procs.2015.07.077

Google Scholar

[2] A. Jayaram, « An IIoT quality global enterprise inventory management model for automation and demand forecasting based on cloud », mai 2017, p.1258‑1263.

DOI: 10.1109/ccaa.2017.8230011

Google Scholar

[3] C. J. Bartodziej, « Introduction », in The Concept Industry 4.0 : An Empirical Analysis of Technologies and Applications in Production Logistics, C. J. Bartodziej, Éd. Wiesbaden: Springer Fachmedien, 2017, p.1‑6.

Google Scholar

[4] J. Lee, H.-A. Kao, et S. Yang, « Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment », Procedia CIRP, vol. 16, p.3‑8, janv. 2014,.

DOI: 10.1016/j.procir.2014.02.001

Google Scholar

[5] J. Qin, Y. Liu, et R. Grosvenor, « A Categorical Framework of Manufacturing for Industry 4.0 and Beyond », Procedia CIRP, vol. 52, p.173‑178, janv. 2016,.

DOI: 10.1016/j.procir.2016.08.005

Google Scholar

[6] K.-C. Tan, «A Framework of Supply Chain Management Literature», European Journal of Purchasing & Supply Management, vol. 7, p.39‑48, mars 2001,.

DOI: 10.1016/S0969-7012(00)00020-4

Google Scholar

[7] R. Handfield, P. Cousins, B. Lawson, et K. Petersen, « How Can Supply Management Really Improve Performance? A Knowledge-Based Model of Alignment Capabilities », Journal of Supply Chain Management, vol. 51, oct. 2014,.

DOI: 10.1111/jscm.12066

Google Scholar

[8] B. Scholz-Reiter, E. M. Frazzon, et T. Makuschewitz, « Integrating manufacturing and logistic systems along global supply chains », CIRP Journal of Manufacturing Science and Technology, vol. 2, no 3, p.216‑223, janv. 2010,.

DOI: 10.1016/j.cirpj.2010.03.003

Google Scholar

[9] G. C. Stevens, « Integrating the Supply Chain », International Journal of Physical Distribution & Materials Management, vol. 19, no 8, p.3‑8, janv. 1989,.

Google Scholar

[10] M. Peng, Y. Peng, et H. Chen, « Post-seismic supply chain risk management: A system dynamics disruption analysis approach for inventory and logistics planning », Computers & Operations Research, vol. 42, p.14‑24, févr. 2014,.

DOI: 10.1016/j.cor.2013.03.003

Google Scholar

[11] T. Lee et H. Nam, « An Empirical Study on the Impact of Individual and Organizational Supply Chain Orientation on Supply Chain Management », The Asian Journal of Shipping and Logistics, vol. 32, p.249‑255, déc. 2016,.

DOI: 10.1016/j.ajsl.2016.12.009

Google Scholar

[12] D. L. Cooke et T. R. Rohleder, « Inventory evaluation and product slate management in large-scale continuous process industries », Journal of Operations Management, vol. 24, no 3, p.235‑249, avr. 2006,.

DOI: 10.1016/j.jom.2004.08.009

Google Scholar

[13] K. Ryu, I. Moon, S. Oh, et M. Jung, « A fractal echelon approach for inventory management in supply chain networks », International Journal of Production Economics, vol. 143, no 2, p.316‑326, juin 2013,.

DOI: 10.1016/j.ijpe.2012.01.002

Google Scholar

[14] L. Chen, Ş. Yücel, et K. Zhu, « Inventory management in a closed-loop supply chain with advance demand information », Operations Research Letters, vol. 45, no 2, p.175‑180, mars 2017,.

DOI: 10.1016/j.orl.2017.02.002

Google Scholar

[15] M. G. Matsebatlela et K. Mpofu, « Inventory Management Framework to minimize supply and demand mismatch on a manufacturing organization », IFAC-PapersOnLine, vol. 48, no 3, p.260‑265, janv. 2015,.

DOI: 10.1016/j.ifacol.2015.06.091

Google Scholar

[16] M. Udenio, K. Hoberg, et J. C. Fransoo, « Inventory agility upon demand shocks: Empirical evidence from the financial crisis », Journal of Operations Management, vol. 62, p.16‑43, sept. 2018,.

DOI: 10.1016/j.jom.2018.08.001

Google Scholar

[17] V. Lukinskiy, V. Lukinskiy, et B. Sokolov, « Control of inventory dynamics: A survey of special cases for products with low demand », Annual Reviews in Control, vol. 49, p.306‑320, janv. 2020,.

DOI: 10.1016/j.arcontrol.2020.04.005

Google Scholar

[18] T. Iida, « Benefits of leadtime information and of its combination with demand forecast information », International Journal of Production Economics, vol. 163, p.146‑156, mai 2015,.

DOI: 10.1016/j.ijpe.2015.02.010

Google Scholar

[19] R. M. van Steenbergen et M. R. K. Mes, « Forecasting demand profiles of new products », Decision Support Systems, vol. 139, p.113401, déc. 2020,.

DOI: 10.1016/j.dss.2020.113401

Google Scholar

[20] B. Zhang, D. Duan, et Y. Ma, « Multi-product expedited ordering with demand forecast updates », International Journal of Production Economics, vol. 206, p.196‑208, déc. 2018,.

DOI: 10.1016/j.ijpe.2018.09.034

Google Scholar

[21] E. Wilhelmsson et H. Persson, « The impact of omni-channel retailing on demand planning for new products at IKEA », 2018, Consulté le: nov. 20, 2021. [En ligne]. Disponible sur: http://lup.lub.lu.se/student-papers/record/8957979.

Google Scholar

[22] E. Balugani, F. Lolli, R. Gamberini, B. Rimini, et A. Regattieri, « Clustering for inventory control systems », IFAC-PapersOnLine, vol. 51, no 11, p.1174‑1179, janv. 2018,.

DOI: 10.1016/j.ifacol.2018.08.431

Google Scholar

[23] O. Al-Khazali et A. Mirzaei, « Stock market anomalies, market efficiency and the adaptive market hypothesis: Evidence from Islamic stock indices », Journal of International Financial Markets, Institutions and Money, vol. 51, p.190‑208, nov. 2017,.

DOI: 10.1016/j.intfin.2017.10.001

Google Scholar

[24] N. Wang, J. Guo, X. Liu, et T. Fang, « A service demand forecasting model for one-way electric car-sharing systems combining long short-term memory networks with Granger causality test », Journal of Cleaner Production, vol. 244, p.118812, janv. 2020,.

DOI: 10.1016/j.jclepro.2019.118812

Google Scholar

[25] C.-Y. Lee et M.-C. Chiang, « Aggregate demand forecast with small data and robust capacity decision in TFT-LCD manufacturing », Computers & Industrial Engineering, vol. 99, p.415‑422, sept. 2016,.

DOI: 10.1016/j.cie.2016.02.013

Google Scholar

[26] J. Cano-Belmán et H. Meyr, « Deterministic allocation models for multi-period demand fulfillment in multi-stage customer hierarchies », Computers & Operations Research, vol. 101, p.76‑92, janv. 2019,.

DOI: 10.1016/j.cor.2018.09.002

Google Scholar

[27] Z. Li et Q. (Grace) Fu, « Robust inventory management with stock-out substitution », International Journal of Production Economics, vol. 193, p.813‑826, nov. 2017,.

DOI: 10.1016/j.ijpe.2017.09.011

Google Scholar

[28] Y. Rekik, C. H. Glock, et A. A. Syntetos, « Enriching demand forecasts with managerial information to improve inventory replenishment decisions: Exploiting judgment and fostering learning », European Journal of Operational Research, vol. 261, no 1, p.182‑194, août 2017,.

DOI: 10.1016/j.ejor.2017.02.001

Google Scholar

[29] R. Fildes, K. Nikolopoulos, S. Crone, et A. Syntetos, « Forecasting and operational research: A review », Journal of The Operational Research Society - J OPER RES SOC, vol. 59, p.1150‑1172, mai 2008,.

DOI: 10.1057/palgrave.jors.2602597

Google Scholar

[30] R. Chen, Z. Rao, G. Liu, Y. Chen, et S. Liao, « The long-term forecast of energy demand and uncertainty evaluation with limited data for energy-imported cities in China: a case study in Hunan », Energy Procedia, vol. 160, p.396‑403, févr. 2019,.

DOI: 10.1016/j.egypro.2019.02.173

Google Scholar

[31] W. Puchalsky, G. T. Ribeiro, C. P. da Veiga, R. Z. Freire, et L. dos Santos Coelho, « Agribusiness time series forecasting using Wavelet neural networks and metaheuristic optimization: An analysis of the soybean sack price and perishable products demand », International Journal of Production Economics, vol. 203, p.174‑189, sept. 2018,.

DOI: 10.1016/j.ijpe.2018.06.010

Google Scholar

[32] A. Sardinha-Lourenço, A. Andrade-Campos, A. Antunes, et M. S. Oliveira, « Increased performance in the short-term water demand forecasting through the use of a parallel adaptive weighting strategy », Journal of Hydrology, vol. 558, p.392‑404, mars 2018,.

DOI: 10.1016/j.jhydrol.2018.01.047

Google Scholar

[33] S. Xu, H. K. Chan, et T. Zhang, « Forecasting the demand of the aviation industry using hybrid time series SARIMA-SVR approach », Transportation Research Part E: Logistics and Transportation Review, vol. 122, p.169‑180, févr. 2019,.

DOI: 10.1016/j.tre.2018.12.005

Google Scholar

[34] E. M. Burger et S. J. Moura, « Gated ensemble learning method for demand-side electricity load forecasting », Energy and Buildings, vol. 109, p.23‑34, déc. 2015,.

DOI: 10.1016/j.enbuild.2015.10.019

Google Scholar

[35] L. Ferbar Tratar, « Forecasting method for noisy demand », International Journal of Production Economics, vol. 161, p.64‑73, mars 2015,.

DOI: 10.1016/j.ijpe.2014.11.019

Google Scholar

[36] L. F. Tratar, « Joint optimisation of demand forecasting and stock control parameters », International Journal of Production Economics, vol. 127, no 1, p.173‑179, sept. 2010,.

DOI: 10.1016/j.ijpe.2010.05.009

Google Scholar

[37] Y. Zhao, H. Zhang, L. An, et Q. Liu, « Improving the approaches of traffic demand forecasting in the big data era », Cities, vol. 82, p.19‑26, déc. 2018,.

DOI: 10.1016/j.cities.2018.04.015

Google Scholar

[38] H. Reinhardt, J.-P. Bergmann, M. Münnich, D. Rein, et M. Putz, « A survey on modeling and forecasting the energy consumption in discrete manufacturing », Procedia CIRP, vol. 90, p.443‑448, janv. 2020,.

DOI: 10.1016/j.procir.2020.01.078

Google Scholar

[39] M. E. Khodayar et H. Wu, «Demand Forecasting in the Smart Grid Paradigm: Features and Challenges», The Electricity Journal, vol. 28, no 6, p.51‑62, juill. 2015,.

DOI: 10.1016/j.tej.2015.06.001

Google Scholar

[40] F. Lücker et R. W. Seifert, « Building up Resilience in a Pharmaceutical Supply Chain through Inventory, Dual Sourcing and Agility Capacity », Omega, vol. 73, p.114‑124, déc. 2017,.

DOI: 10.1016/j.omega.2017.01.001

Google Scholar

[41] C. J. Taylor, D. J. Pedregal, P. C. Young, et W. Tych, « Environmental time series analysis and forecasting with the Captain toolbox », Environmental Modelling & Software, vol. 22, no 6, p.797‑814, juin 2007,.

DOI: 10.1016/j.envsoft.2006.03.002

Google Scholar

[42] J.-F. Cordeau et G. Laporte, « The dial-a-ride problem: models and algorithms », Ann Oper Res, vol. 153, no 1, p.29‑46, sept. 2007,.

DOI: 10.1007/s10479-007-0170-8

Google Scholar

[43] H. Patil et Brig. R. Divekar, «Inventory Management Challenges for B2C E-commerce Retailers», Procedia Economics and Finance, vol. 11, p.561‑571, janv. 2014,.

DOI: 10.1016/S2212-5671(14)00221-4

Google Scholar

[44] J. Dai, S. Peng, et S. Li, «Mitigation of Bullwhip Effect in Supply Chain Inventory Management Model», Procedia Engineering, vol. 174, p.1229‑1234, janv. 2017,.

DOI: 10.1016/j.proeng.2017.01.291

Google Scholar

[45] W. Muchaendepi, C. Mbohwa, T. Hamandishe, et J. Kanyepe, « Inventory Management and Performance of SMEs in the Manufacturing Sector of Harare », Procedia Manufacturing, vol. 33, p.454‑461, janv. 2019,.

DOI: 10.1016/j.promfg.2019.04.056

Google Scholar

[46] A. Olaru et C. Gratie, « Agent-Based, Context-Aware Information Sharing for Ambient Intelligence », International Journal on Artificial Intelligence Tools, vol. 20, no 6, p.985‑1000, 2011,.

DOI: 10.1142/s0218213011000498

Google Scholar

[47] U. D. Atmojo, Z. Salcic, K. I.-K. Wang, et H. Park, « System-level approach to the design of ambient intelligence systems based on wireless sensor and actuator networks », J Ambient Intell Human Comput, vol. 6, no 2, p.153‑169, avr. 2015,.

DOI: 10.1007/s12652-014-0221-3

Google Scholar

[48] B. S. S. Tejesh et S. Neeraja, « Warehouse inventory management system using IoT and open source framework », Alexandria Engineering Journal, vol. 57, no 4, p.3817‑3823, déc. 2018,.

DOI: 10.1016/j.aej.2018.02.003

Google Scholar

[49] J. Lee, B. Bagheri, et H.-A. Kao, « A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems », Manufacturing Letters, vol. 3, p.18‑23, janv. 2015,.

DOI: 10.1016/j.mfglet.2014.12.001

Google Scholar

[50] J. Arif, F. Jawab, et Y. MOUZOUNA, « Design on Improvement of Traceability Process in the Outsourcing of Logistics' Activities Using the Internet of Things (IoT) Applications », Maejo international journal of science and technology, vol. 29, p.1093‑1108, janv. (2020).

Google Scholar

[51] E. Manavalan et K. Jayakrishna, « A review of Internet of Things (IoT) embedded sustainable supply chain for industry 4.0 requirements », Computers & Industrial Engineering, vol. 127, p.925‑953, janv. 2019,.

DOI: 10.1016/j.cie.2018.11.030

Google Scholar

[52] C. Faller et D. Feldmüller, « Industry 4.0 Learning Factory for regional SMEs », Procedia CIRP, vol. 32, p.88‑91, janv. 2015,.

DOI: 10.1016/j.procir.2015.02.117

Google Scholar

[53] R. Raghu, « The many dimensions of successful IoT deployment », Network Security, vol. 2018, no 12, p.10‑15, déc. 2018,.

DOI: 10.1016/s1353-4858(18)30126-0

Google Scholar

[54] O. Bello, S. Zeadally, et M. Badra, « Network layer inter-operation of Device-to-Device communication technologies in Internet of Things (IoT) », Ad Hoc Networks, vol. 57, p.52‑62, mars 2017,.

DOI: 10.1016/j.adhoc.2016.06.010

Google Scholar

[55] J. M. Talavera et al., « Review of IoT applications in agro-industrial and environmental fields », Computers and Electronics in Agriculture, vol. 142, p.283‑297, nov. 2017,.

DOI: 10.1016/j.compag.2017.09.015

Google Scholar

[56] J. Mongay Batalla, M. Gajewski, W. Latoszek, P. Krawiec, C. X. Mavromoustakis, et G. Mastorakis, « ID-based service-oriented communications for unified access to IoT », Computers & Electrical Engineering, vol. 52, p.98‑113, mai 2016,.

DOI: 10.1016/j.compeleceng.2016.02.020

Google Scholar

[57] H. Elazhary, « Internet of Things (IoT), mobile cloud, cloudlet, mobile IoT, IoT cloud, fog, mobile edge, and edge emerging computing paradigms: Disambiguation and research directions », Journal of Network and Computer Applications, vol. 128, p.105‑140, févr. 2019,.

DOI: 10.1016/j.jnca.2018.10.021

Google Scholar

[58] H. El-Sayed et al., « Edge of Things: The Big Picture on the Integration of Edge, IoT and the Cloud in a Distributed Computing Environment », IEEE Access, vol. 6, p.1706‑1717, 2018,.

DOI: 10.1109/access.2017.2780087

Google Scholar

[59] M. A. A. da Cruz, J. J. P. C. Rodrigues, P. Lorenz, P. Solic, J. Al-Muhtadi, et V. H. C. Albuquerque, « A proposal for bridging application layer protocols to HTTP on IoT solutions », Future Generation Computer Systems, vol. 97, p.145‑152, août 2019,.

DOI: 10.1016/j.future.2019.02.009

Google Scholar

[60] S. N. Swamy, D. Jadhav, et N. Kulkarni, « Security threats in the application layer in IOT applications », in 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), févr. 2017, p.477‑480.

DOI: 10.1109/i-smac.2017.8058395

Google Scholar

[61] J. Gubbi, R. Buyya, S. Marusic, et M. Palaniswami, « Internet of Things (IoT): A vision, architectural elements, and future directions », Future Generation Computer Systems, vol. 29, no 7, p.1645‑1660, sept. 2013,.

DOI: 10.1016/j.future.2013.01.010

Google Scholar

[62] Y. Lv, C. K. M. Lee, H. K. Chan, et W. H. Ip, « RFID-based colored Petri net applied for quality monitoring in manufacturing system », 2012,.

DOI: 10.1007/s00170-011-3568-z

Google Scholar

[63] C. B. Tan, M. H. A. Hijazi, Y. Lim, et A. Gani, « A survey on Proof of Retrievability for cloud data integrity and availability: Cloud storage state-of-the-art, issues, solutions and future trends», Journal of Network and Computer Applications, vol. 110, p.75‑86, mai 2018,.

DOI: 10.1016/j.jnca.2018.03.017

Google Scholar

[64] M. D. Redel-Macías, C. Hervás-Martínez, P. A. Gutiérrez, S. Pinzi, A. J. Cubero-Atienza, et M. P. Dorado, « Computational models to predict noise emissions of a diesel engine fueled with saturated and monounsaturated fatty acid methyl esters », Energy, vol. 144, p.110‑119, févr. 2018,.

DOI: 10.1016/j.energy.2017.11.143

Google Scholar

[65] J. Arif, Y. Mouzouna, et F. Jawab, The Use of Internet of Things (IoT) Applications in the Logistics Outsourcing: Smart RFID Tag as an Example. 2019.Third European Conference on Industrial Engineering and Operations Management IEOM, Pilsen, Czech, July (2019).

Google Scholar

[66] L. Cui, J. Deng, F. Liu, Y. Zhang, et M. Xu, « Investigation of RFID investment in a single retailer two-supplier supply chain with random demand to decrease inventory inaccuracy », Journal of Cleaner Production, vol. 142, p.2028‑2044, janv. 2017,.

DOI: 10.1016/j.jclepro.2016.11.081

Google Scholar

[67] A. Seba, N. Nouali-Taboudjemat, N. Badache, et H. Seba, « A review on security challenges of wireless communications in disaster emergency response and crisis management situations », Journal of Network and Computer Applications, vol. 126, p.150‑161, janv. 2019,.

DOI: 10.1016/j.jnca.2018.11.010

Google Scholar

[68] Q. Wang, X. Zhu, Y. Ni, L. Gu, et H. Zhu, « Blockchain for the IoT and industrial IoT: A review », Internet of Things, vol. 10, p.100081, juin 2020,.

DOI: 10.1016/j.iot.2019.100081

Google Scholar

[69] G. Van der Heide, P. Buijs, K. J. Roodbergen, et I. F. A. Vis, « Dynamic shipments of inventories in shared warehouse and transportation networks », Transportation Research Part E: Logistics and Transportation Review, vol. 118, p.240‑257, oct. 2018,.

DOI: 10.1016/j.tre.2018.07.012

Google Scholar

[70] M. S. Hossain et G. Muhammad, « Cloud-assisted Industrial Internet of Things (IIoT) – Enabled framework for health monitoring », Computer Networks, vol. 101, p.192‑202, juin 2016,.

DOI: 10.1016/j.comnet.2016.01.009

Google Scholar

[71] X. Wang, J. Liu, Y. Wang, X. Chen, et L. Chen, « Efficient missing tag identification in blocker-enabled RFID systems », Computer Networks, vol. 164, p.106894, déc. 2019,.

DOI: 10.1016/j.comnet.2019.106894

Google Scholar

[72] K. Azzouz, J. Arif, et M. B. Benboubker, « Exploratory Study of the Role of Logistics Service Providers in Terms of Traceability in the Process of Outsourcing of Logistics' Activities: Case of Moroccan LSP », International Journal of Engineering Research in Africa, vol. 54, p.187‑208, 2021,.

DOI: 10.4028/www.scientific.net/jera.54.187

Google Scholar

[73] T. Kawanaka et T. Kudo, « Inventory Satisfaction Discrimination Method Utilizing Images and Deep Learning », Procedia Computer Science, vol. 126, p.937‑946, janv. 2018,.

DOI: 10.1016/j.procs.2018.08.028

Google Scholar

[74] T. Fang et R. Lahdelma, « Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system », Applied Energy, vol. 179, p.544‑552, oct. 2016,.

DOI: 10.1016/j.apenergy.2016.06.133

Google Scholar

[75] B. M. Brentan, E. Luvizotto Jr., M. Herrera, J. Izquierdo, et R. Pérez-García, « Hybrid regression model for near real-time urban water demand forecasting », Journal of Computational and Applied Mathematics, vol. 309, p.532‑541, janv. 2017,.

DOI: 10.1016/j.cam.2016.02.009

Google Scholar

[76] N. J. Johannesen, M. Kolhe, et M. Goodwin, « Relative evaluation of regression tools for urban area electrical energy demand forecasting », Journal of Cleaner Production, vol. 218, p.555‑564, mai 2019,.

DOI: 10.1016/j.jclepro.2019.01.108

Google Scholar

[77] G. Guo, W. You, G. Qian, et W. Shao, « Parallel maximum likelihood estimator for multiple linear regression models », Journal of Computational and Applied Mathematics, vol. 273, p.251‑263, janv. 2015,.

DOI: 10.1016/j.cam.2014.06.005

Google Scholar

[78] A. J. Hayter, W. Liu, et P. Ah-Kine, « A ray method of confidence band construction for multiple linear regression models », Journal of Statistical Planning and Inference, vol. 139, no 2, p.329‑334, févr. 2009,.

DOI: 10.1016/j.jspi.2008.04.029

Google Scholar

[79] J. H. Holland, « Genetic algorithms and classifier systems: Foundations and future directions », Univ. of Michigan, Ann Arbor, MI (United States), LA-UR-87-1863; CONF-870775-1, janv. 1987. Consulté le: nov. 21, 2021. [En ligne]. Disponible sur: https://www.osti.gov/biblio/6277983.

Google Scholar

[80] S. Dehuri, S. Patnaik, A. Ghosh, et R. Mall, « Application of elitist multi-objective genetic algorithm for classification rule generation », Applied Soft Computing, vol. 8, no 1, p.477‑487, janv. 2008,.

DOI: 10.1016/j.asoc.2007.02.009

Google Scholar

[81] S.-W. Fei et Y. Sun, « Forecasting dissolved gases content in power transformer oil based on support vector machine with genetic algorithm », Electric Power Systems Research, vol. 78, no 3, p.507‑514, mars 2008,.

DOI: 10.1016/j.epsr.2007.04.006

Google Scholar

[82] H. Ohtake, K. Shimose, J. G. da S. Foncseca, T. Takashima, T. Oozeki, et Y. Yamada, «Seasonal and Regional Variations of the Range of Forecast Errors of Global Irradiance by the Japanese Operational Physical Model », Energy Procedia, vol. 57, p.1247‑1256, janv. 2014,.

DOI: 10.1016/j.egypro.2014.10.114

Google Scholar