[1]
C. Wang, Y. Yang, Tunable volume memory poly (acrylic acid sodium) hydrogel by metal ionsd. Functional Materials Letters, 2022, 15(02)
DOI: 10.1142/S1793604722500102
Google Scholar
[2]
C. Wang, X Bai, Guo Z, et al., A strategy that combines a hydrogel and graphene oxide to improve the water-lubricated performance of ultrahigh molecular weight polyethylene. Composites Part a Applied Science and Manufacturing, 2021, 141(7): 106207
DOI: 10.1016/j.compositesa.2020.106207
Google Scholar
[3]
S. Wu, J. Guo, Y. Wang, et al., Facile preparation of magnetic sodium alginate/carboxymethyl cellulose composite hydrogel for removal of heavy metal ions from aqueous solution. Journal of Materials Science, 2021, 56(23): 1-12
DOI: 10.1007/s10853-021-06044-4
Google Scholar
[4]
S. Chen, J. Xie, J. Liu, et al., Transparent, highly-stretchable, adhesive, and ionic conductive composite hydrogel for biomimetic skin. Journal of Materials Science, 2021, 56(3): 1-13
DOI: 10.1007/s10853-020-05382-z
Google Scholar
[5]
Y.S. Zhang, A. Khademhosseini. Advances in engineering hydrogels. Science, 2017, 356(6337): eaaf3627
DOI: 10.1126/science.aaf3627
Google Scholar
[6]
F. Tian, H. Wang, H. Li, et al., Molecular simulation of diffusion of rigidity-tuned nanoparticles in biological hydrogels. Acta Mechanica Sinica, 2019, 35(2): 376-383
DOI: 10.1007/s10409-019-00858-x
Google Scholar
[7]
M. Seidenstuecker, T. Schmeichel, L. Ritschl, et al., Mechanical properties of the composite material consisting of β-TCP and Alginate-Di-Aldehyde-Gelatin Hydrogel and its degradation behavior. Materials, 2021, 14(5): 1303
DOI: 10.3390/ma14051303
Google Scholar
[8]
W. Liu, F. Zhou, D. Sun, et al., Investigation of transient mass transport induced deformation of PEGDA hydrogel in photocurable solution. Modelling and Simulation in Materials Science and Engineering, 2021, 29(5): 055003 (19pp)
DOI: 10.1088/1361-651X/abf487
Google Scholar
[9]
F. Re, L. Sartore, E. Borsani, et al., Mineralization of 3D Osteogenic model based on Gelatin-dextran hybrid hydrogel scaffold bioengineered with mesenchymal stromal cells: a multiparametric evaluation. Materials, 2021, 14(14): 3852
DOI: 10.3390/ma14143852
Google Scholar
[10]
I. Taesuwan, A. Ounkaew, M. Okhawilai, et al., Smart conductive nanocomposite hydrogel containing green synthesized nanosilver for use in an eco-friendly strain sensor. Cellulose, 2022, 29(1): 273-286
DOI: 10.1007/s10570-021-04302-x
Google Scholar
[11]
A. Sw, C.B. Hui, L,A. Kai, et al., Strong, transparent, and thermochromic composite hydrogel from wood derived highly mesoporous cellulose network and PNIPAM. Composites Part A: Applied Science and Manufacturing, 2021, 154
DOI: 10.1016/j.compositesa.2021.106757
Google Scholar
[12]
W. Hnoosong, P. Rungcharoenthong, S. Sangjan, Preparation and Properties of Urea Slow-Release Fertilizer Hydrogel by Sodium Alginate-Gelatin Biopolymer. Key Engineering Materials, 2021, 889: 98-103
DOI: 10.4028/www.scientific.net/KEM.889.98
Google Scholar
[13]
C. Yang, T. Yin, Z. Suo, Polyacrylamide hydrogels. I. Network imperfection. Journal of the Mechanics and Physics of Solids, 2019
DOI: 10.1016/j.jmps.2019.06.018
Google Scholar
[14]
H.J. Zhang, T.L. Sun, A.K. Zhang, et al., Tough physical double‐network hydrogels based on amphiphilic triblock copolymers. Advanced Materials, 2016, 28(24): 4884-4890
DOI: 10.1002/adma.201600466
Google Scholar
[15]
J. Li, X. Li, X. Ni, et al., Self-assembled supramolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and alpha-cyclodextrin for controlled drug delivery. Biomaterials. 2006. 27(22): 4132-40
DOI: 10.1016/j.biomaterials.2006.03.025
Google Scholar
[16]
Z. Zhao, X. Kuang, C. Yuan, et al. Hydrophilic/hydrophobic composite shape-shifting structures. ACS Applied Materials & Interfaces, 2018: acsami.8b02444
DOI: 10.1021/acsami.8b02444
Google Scholar
[17]
S.K. Pathak. Hydrogels with superior mechanical properties from the synergistic effect in hydrophobic-hydrophilic copolymers. Chemical Engineering Journal, 2019, 362: 325-338
DOI: 10.1016/j.cej.2018.12.023
Google Scholar
[18]
J. Chen, Y. Ao, T. Lin, et al., High-toughness polyacrylamide gel containing hydrophobic crosslinking and its double network gel. Polymer, 2016, 87: 73-80
DOI: 10.1016/j.polymer.2016.01.069
Google Scholar
[19]
C.J. Chen, M.K. Singh, K. Wunderlich, et al., Polymer cyclization as a general strategy for the emergence of hierarchical nanostructures. ChemRxiv. Preprint. 2020
DOI: 10.26434/chemrxiv.13168139
Google Scholar
[20]
S.S. Jang, W.A. Goddard, M.Y.S. Kalani, Mechanical and transport properties of the poly (ethylene oxide)-poly (acrylic acid) double network hydrogel from molecular dynamic simulations. The Journal of Physical Chemistry B, 2007, 111(7): 1729-1737
DOI: 10.1021/jp0656330
Google Scholar
[21]
K. Hagita, Y. Shudo, M. Shibayama. Two-dimensional scattering patterns and stress-strain relation of elongated clay nano composite gels: molecular dynamics simulation analysis. Polymer, 2018, 154: 62-79
DOI: 10.1039/C8SM02363H
Google Scholar
[22]
D. Hossain, M.A. Tschopp, D.K. Ward, et al., Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene. Polymer, 2010, 51(25): 6071-6083
DOI: 10.1016/j.polymer.2010.10.009
Google Scholar
[23]
D. Hou, J. Xu, Y. Zhang, et al., Insights into the molecular structure and reinforcement mechanism of the hydrogel-cement nanocomposite: An experimental and molecular dynamics study. Composites, 2019, 177(15): 107421.1-107421.13
DOI: 10.1016/j.compositesb.2019.107421
Google Scholar
[24]
Z. Zhang, G. Hou, J. Shen, et al. Designing the slide-ring polymer network with both good mechanical and damping properties via molecular dynamics simulation. Polymers, 2018, 10(9): 964
DOI: 10.3390/polym10090964
Google Scholar
[25]
D.S. Hou, Y. Zhang, T.J. Yang, et al., Molecular structure, dynamics, and mechanical behavior of sodium aluminosilicate hydrate (NASH) gel at elevated temperature: a molecular dynamics study. Physical chemistry chemical physics: PCCP, 2018. 20, 20695
DOI: 10.1039/c8cp03411g
Google Scholar
[26]
J. Lei, S. Xu, Z. Li, Z, et al., Study on large deformation behavior of polyacrylamide hydrogel using dissipative particle dynamics. Frontiers in chemistry, 2020, 8, 115
DOI: 10.3389/fchem.2020.00115
Google Scholar
[27]
M. An, B. Demir, X. Wan, et al., Predictions of Thermo‐Mechanical properties of cross‐ linked polyacrylamide hydrogels using molecular simulations. Advanced Theory and Simulations, 2019
DOI: 10.1002/adts.201800153
Google Scholar
[28]
Z. Zhang, G. Hou, J. Shen, et al., Designing the Slide-ring polymer network with both good mechanical and damping properties via molecular dynamics simulation. Polymers, 2018, 10(9): 964
DOI: 10.3390/polym10090964
Google Scholar
[29]
H.Y. Wan, L.Q. Yuan, Y. Zhang, Insight into the leaching of sodium Alumino-silicate hydrate (N-A-S-H) gel: a molecular dynamics study. Frontiers in Materials, 2020, 7, 56
DOI: 10.3389/fmats.2020.00056
Google Scholar
[30]
K.H. Shen, M.D. Fan, L.M. Hall, Molecular dynamics simulations of ion-containing polymers using generic coarse-grained models. Macromolecules, 2021, 54(5): 2031−2052
DOI: 10.1021/acs.macromol.0c02557
Google Scholar
[31]
Y.R. Sliozberg, T.L. Chantawansri, J.L. Lenhart, et al., Structural and mechanical properties of advanced polymer gels with rigid side-chains using coarse-grained molecular dynamics. Polymer, 2014, 55(20): 5266-5275
DOI: 10.1016/j.polymer.2014.08.063
Google Scholar
[32]
N. Nouri, S. Ziaei-Rad, A molecular dynamics investigation on mechanical properties of cross-linked polymer networks. Macromolecules, 2011, 44(13): 5481-5489
DOI: 10.1021/ma2005519
Google Scholar
[33]
H. Salahshoor, N. Rahbar, Multi-scale mechanical and transport properties of a hydrogel. Journal of the mechanical behavior of biomedical materials, 2014, 37: 299-306
DOI: 10.1016/j.jmbbm.2014.05.028
Google Scholar
[34]
A. Makke, M. Perez, O. Lame, et al., Mechanical testing of glassy and rubbery polymers in numerical simulations: Role of boundary conditions in tensile stress experiments. The Journal of chemical physics, 2009, 131(1): 014904
DOI: 10.1063/1.3148381
Google Scholar
[35]
L. Shi, Q. Han, Molecular dynamics study of deformation mechanisms of poly (vinyl alcohol) hydrogel. Molecular Simulation, 2018, 44(17): 1363-1370
DOI: 10.1080/08927022.2018.1506120
Google Scholar
[36]
Y. Higuchi, M. Kubo, Coarse-grained molecular dynamics simulation of the void growth process in the block structure of semicrystalline polymers. Modelling and Simulation in Materials Science and Engineering, 2016, 24(5): 055006
DOI: 10.1088/0965-0393/24/5/055006
Google Scholar
[37]
T. Matsuda, R. Kawakami, R. Namba, et al., Mechanoresponsive self-growing hydrogels inspired by muscle training. Science, 2019, 363(6426): 504-508
DOI: 10.1126/science.aau9533
Google Scholar
[38]
J.E. Jones, "On the determination of molecular fields.—I. From the variation of the viscosity of a gas with temperature". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 1924, 106 (738): 441–462.
DOI: 10.1098/rspa.1924.0081
Google Scholar
[39]
S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. Journal of computational physics, 1995, 117(1): 1-19.
DOI: 10.1006/jcph.1995.1039
Google Scholar
[40]
C.A. Lin, T.H. Ku, Shear and Elongational Flow Properties of Thermoplastic Polyvinyl Alcohol Melts With Different Plasticizer Contents and Degrees of Polymerization. Focus on Plastics Additives, 2008, 200(1-3): 24-25.
DOI: 10.1016/j.jmatprotec.2007.08.057
Google Scholar