[1]
A. Jamal, M. A. I. El-Shaarawi, E. M. A. Mokheimer. Effect of Eccentricity on Conjugate Natural Convection in Vertical Eccentric Annuli. International Journal of Mechanical and Mechatronics Engineering, 7 (6) (2013) 1074- 1079.
DOI: 10.1615/ihtc13.p7.150
Google Scholar
[2]
J. Prusa, L. S. YaoL. Natural Convection Heat Transfer between Eccentric Horizontal Cylinders. J. Heat Transfer, 105 (1) (1983) 108-116.
DOI: 10.1115/1.3245527
Google Scholar
[3]
W. R. Chen. Transient Natural Convection of Micropolar Fluids between Concentric and Vertically Eccentric Spheres. International Journal of Heat and Mass Transfer. 48 (10) (2005) 1936-1951.
DOI: 10.1016/j.ijheatmasstransfer.2004.11.018
Google Scholar
[4]
J. P. B. Mota, I. A. A. C. Esteves , C. A. M. Portugal, J. M. S. S. Esperanca, E. Saatdjian. Natural convection heat transfer in horizontal eccentric elliptic annuli containing saturated porous media. International Journal of Heat and Mass Transfer. 43 (24) (2000) 4367-4379.
DOI: 10.1016/s0017-9310(00)00068-5
Google Scholar
[5]
A. K. Hassan, A. A. A. Abaas, S. H. Omran, J. H. Laith. Natural Convection in Eccentric Annuli packedwith Spheres. Journal of Mechanical Engineering Research and Developments. 43(6) (2020) 418- 439.
Google Scholar
[6]
N. H. Kuehn, R. J. Goldstein. Correlating equations for natural convection heat transfer betweenhorizontal circular cylinders. International Journal of Heat and Mass Transfer. 19 (10) (1976) 1127-1134.
DOI: 10.1016/0017-9310(76)90145-9
Google Scholar
[7]
A. C. Ratzel, C. E. Hickox, D. K. Gartling. Techniques for reducing thermal conduction and naturalconvection heat losses in annular receiver geometries. Journal of Heat Transfer. 101 (1) (1979) 108-113.
DOI: 10.1115/1.3450899
Google Scholar
[8]
L. S. Yao. Analysis of heat transfer in slightly eccentric annuli. Journal of Heat Transfer. 102 (2) (1980) 279-284.
DOI: 10.1115/1.3244274
Google Scholar
[9]
H. Han, T. H. Kuehn. Numerical simulation of double diffusive natural convection in a vertical rectangular enclosure. Heat Transfer in Convective Flows. 107 (1989) 149-154.
DOI: 10.1016/0017-9310(91)90265-g
Google Scholar
[10]
O. Fakher, B-B. Brahim, T. Lili. Numerical simulation of unsteady double-diffusive natural convection within an inclined parallelepipedic enclosure. International Journal of Modern Physics c . 25 (11) (2014).
DOI: 10.1142/s0129183114500582
Google Scholar
[11]
A.V. Buchko, A.O. Kostikov. The effect of eccentricity on heat transfer in a borehole countercurrent double pipe heat exchanger. J. of Mech. Eng. 19 (1) (2016) 9-12.
DOI: 10.15407/pmach2016.01.009
Google Scholar
[12]
Cheng C.H. and Chao C.C. Numerical prediction of the buoyancy- driven flow in the annulus between horizontal eccentric elliptical cylinders. Numerical Heat Transfer Part A 30 (1996) 283-303.
DOI: 10.1080/10407789608913841
Google Scholar
[13]
G. Guj, F. Stella. Natural convection in horizontal eccentric annuli: Numerical study. Numer Heat Transfer. 27 (1) (1995) 89-105.
DOI: 10.1080/10407789508913690
Google Scholar
[14]
M. M. Habibi, I. Pop. Natural convection flow and heat transfer in an eccentric annulus filled by Copper nanofluid. International Journal of Heat and Mass Transfer. 61 (2013) 353-364.
DOI: 10.1016/j.ijheatmasstransfer.2013.01.061
Google Scholar
[15]
G.Payam ,M. Siavashi, M. H. Doranehgard. Eccentricity effects of heat source inside a porous annulus on the natural convection heat transfer and entropy generation of Cu-water nanofluid. International Communications in Heat and Mass Transfer. 109 (2019).
DOI: 10.1016/j.icheatmasstransfer.2019.104367
Google Scholar
[16]
H. Bararnia, S. Soleimani, D. D. Ganji. Lattice Boltzmann Simulation of Natural Convection around a Horizontal Elliptic Cylinder Inside a Square Enclosure. Int. Comm.in Heat and Mass Transfer. 38(10) (2011) 1436–1442.
DOI: 10.1016/j.icheatmasstransfer.2011.07.012
Google Scholar
[17]
A. Bouras, D. Taloub, Z. Driss. Effect of Rayleigh number on internal eccentricity in a heated horizontal elliptical cylinder to its coaxial square enclosure. International Journal of Applied Mechanics and Engineering. 25 (3) (2020) 17-29.
DOI: 10.2478/ijame-2020-0032
Google Scholar
[18]
A. Bouras, D. Taloub. Numerical investigation of natural convection phenomena in uniformly heated trapezoidal Cylinder inside an elliptical Enclosur. Journal of Computational Applied Mechanics. 50 (2) (2019) 315-323.
Google Scholar
[19]
D. Taloub, A. Bouras, Z. Driss . Effect of the Soil Inclination on Natural Convection in Half-Elliptical Greenhouses. International Journal of Engineering Research in Africa. 50 (2020) 70-78.
DOI: 10.4028/www.scientific.net/jera.50.70
Google Scholar
[20]
Hadidi, N., Rebhi, R., Bennacer, R., Menni, Y., Ameur, H., Lorenzini, G., ... & Ahmad, H. (2021). Thermosolutal natural convection across an inclined square enclosure partially filled with a porous medium. Results in Physics, 21, 103821.
DOI: 10.1016/j.rinp.2021.103821
Google Scholar
[21]
Lounis, S., Rebhi, R., Hadidi, N., Lorenzini, G., Menni, Y., Ameur, H., & Sidik, N. A. C. (2022). Thermo-Solutal Convection of Carreau-Yasuda Non-Newtonian Fluids in Inclined Square Cavities Under Dufour and Soret Impacts. CFD Letters, 14(3), 96-118
DOI: 10.37934/cfdl.14.3.96118
Google Scholar
[22]
A. Bouras, M. Djezzar, H. Naji, C. Ghernoug. Numerical computation of double-diffusive natural convective flow within an elliptic-shape enclosure. International Communications in Heat and Mass Transfer. 57 (2014) 183-192.
DOI: 10.1016/j.icheatmasstransfer.2014.08.002
Google Scholar
[23]
S.V. Patankar. Numerical Heat Transfer and Fluid Flow. NY, New York: McGraw‐Hill (1980) 113‐137.
Google Scholar
[24]
E.F. Nogotov. Applications of Numerical Heat Transfer. New York, NY: McGraw‐Hill (1978) 122‐125.
Google Scholar
[25]
M.M. Elshamy, M.N. Ozisik, J.P. Coulter. Correlation for laminar natural convection between confocal horizontal elliptical cylinders. Numer Heat Transfer A. 18 (1990) 95‐112.
DOI: 10.1080/10407789008944785
Google Scholar
[26]
T. Tayebi, A.J. Chamkha, M. Djezzar, A. Bouzerzour. Natural Convective Nanofluid Flow in an Annular Space Between Confocal Elliptic Cylinders. Journal of Thermal Science and Engineering Applications. 9 (2017).
DOI: 10.1115/1.4034599
Google Scholar