Numerical Research of Double‐Diffusive Natural Convection in Elliptical Cylinders: Influence of Internal Eccentricity

Article Preview

Abstract:

The second part study of this paper is to numerically study the double-diffusive natural convection phenomenon inside a space annulus, situated between two horizontal confocal elliptic cylinders filled with a laminar flow, is presented. The elliptical coordinates do utilize to transform the physical domain into one rectangular. The basic equations are discretized using the finite-volume method. Using a developed code, the study covers a wide range for (103 ≤ Rat ≤105), Le = 2, N = 1, e = 0.52, 0.62, 0.72, 0.82.We have made some detailed studies covering the influence of the internal eccentricity parameter e1 on heat and mass transfer. Results do present in the form of isotherms, streamlines, and heat transfer. The local and average numbers for Sherwood and Nesselt are also displayed.Comparison with the published results showed that there is a good agreement. Keywords:double-diffusive, natural convection, elliptic cylinders, Rayleigh number, Lewis number.

You might also be interested in these eBooks

Info:

Pages:

33-44

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Jamal, M. A. I. El-Shaarawi, E. M. A. Mokheimer. Effect of Eccentricity on Conjugate Natural Convection in Vertical Eccentric Annuli. International Journal of Mechanical and Mechatronics Engineering, 7 (6) (2013) 1074- 1079.

DOI: 10.1615/ihtc13.p7.150

Google Scholar

[2] J. Prusa, L. S. YaoL. Natural Convection Heat Transfer between Eccentric Horizontal Cylinders. J. Heat Transfer, 105 (1) (1983) 108-116.

DOI: 10.1115/1.3245527

Google Scholar

[3] W. R. Chen. Transient Natural Convection of Micropolar Fluids between Concentric and Vertically Eccentric Spheres. International Journal of Heat and Mass Transfer. 48 (10) (2005) 1936-1951.

DOI: 10.1016/j.ijheatmasstransfer.2004.11.018

Google Scholar

[4] J. P. B. Mota, I. A. A. C. Esteves , C. A. M. Portugal, J. M. S. S. Esperanca, E. Saatdjian. Natural convection heat transfer in horizontal eccentric elliptic annuli containing saturated porous media. International Journal of Heat and Mass Transfer. 43 (24) (2000) 4367-4379.

DOI: 10.1016/s0017-9310(00)00068-5

Google Scholar

[5] A. K. Hassan, A. A. A. Abaas, S. H. Omran, J. H. Laith. Natural Convection in Eccentric Annuli packedwith Spheres. Journal of Mechanical Engineering Research and Developments. 43(6) (2020) 418- 439.

Google Scholar

[6] N. H. Kuehn, R. J. Goldstein. Correlating equations for natural convection heat transfer betweenhorizontal circular cylinders. International Journal of Heat and Mass Transfer. 19 (10) (1976) 1127-1134.

DOI: 10.1016/0017-9310(76)90145-9

Google Scholar

[7] A. C. Ratzel, C. E. Hickox, D. K. Gartling. Techniques for reducing thermal conduction and naturalconvection heat losses in annular receiver geometries. Journal of Heat Transfer. 101 (1) (1979) 108-113.

DOI: 10.1115/1.3450899

Google Scholar

[8] L. S. Yao. Analysis of heat transfer in slightly eccentric annuli. Journal of Heat Transfer. 102 (2) (1980) 279-284.

DOI: 10.1115/1.3244274

Google Scholar

[9] H. Han, T. H. Kuehn. Numerical simulation of double diffusive natural convection in a vertical rectangular enclosure. Heat Transfer in Convective Flows. 107 (1989) 149-154.

DOI: 10.1016/0017-9310(91)90265-g

Google Scholar

[10] O. Fakher, B-B. Brahim, T. Lili. Numerical simulation of unsteady double-diffusive natural convection within an inclined parallelepipedic enclosure. International Journal of Modern Physics c . 25 (11) (2014).

DOI: 10.1142/s0129183114500582

Google Scholar

[11] A.V. Buchko, A.O. Kostikov. The effect of eccentricity on heat transfer in a borehole countercurrent double pipe heat exchanger. J. of Mech. Eng. 19 (1) (2016) 9-12.

DOI: 10.15407/pmach2016.01.009

Google Scholar

[12] Cheng C.H. and Chao C.C. Numerical prediction of the buoyancy- driven flow in the annulus between horizontal eccentric elliptical cylinders. Numerical Heat Transfer Part A 30 (1996) 283-303.

DOI: 10.1080/10407789608913841

Google Scholar

[13] G. Guj, F. Stella. Natural convection in horizontal eccentric annuli: Numerical study. Numer Heat Transfer. 27 (1) (1995) 89-105.

DOI: 10.1080/10407789508913690

Google Scholar

[14] M. M. Habibi, I. Pop. Natural convection flow and heat transfer in an eccentric annulus filled by Copper nanofluid. International Journal of Heat and Mass Transfer. 61 (2013) 353-364.

DOI: 10.1016/j.ijheatmasstransfer.2013.01.061

Google Scholar

[15] G.Payam ,M. Siavashi, M. H. Doranehgard. Eccentricity effects of heat source inside a porous annulus on the natural convection heat transfer and entropy generation of Cu-water nanofluid. International Communications in Heat and Mass Transfer. 109 (2019).

DOI: 10.1016/j.icheatmasstransfer.2019.104367

Google Scholar

[16] H. Bararnia, S. Soleimani, D. D. Ganji. Lattice Boltzmann Simulation of Natural Convection around a Horizontal Elliptic Cylinder Inside a Square Enclosure. Int. Comm.in Heat and Mass Transfer. 38(10) (2011) 1436–1442.

DOI: 10.1016/j.icheatmasstransfer.2011.07.012

Google Scholar

[17] A. Bouras, D. Taloub, Z. Driss. Effect of Rayleigh number on internal eccentricity in a heated horizontal elliptical cylinder to its coaxial square enclosure. International Journal of Applied Mechanics and Engineering. 25 (3) (2020) 17-29.

DOI: 10.2478/ijame-2020-0032

Google Scholar

[18] A. Bouras, D. Taloub. Numerical investigation of natural convection phenomena in uniformly heated trapezoidal Cylinder inside an elliptical Enclosur. Journal of Computational Applied Mechanics. 50 (2) (2019) 315-323.

Google Scholar

[19] D. Taloub, A. Bouras,  Z. Driss . Effect of the Soil Inclination on Natural Convection in Half-Elliptical Greenhouses. International Journal of Engineering Research in Africa. 50 (2020) 70-78.

DOI: 10.4028/www.scientific.net/jera.50.70

Google Scholar

[20] Hadidi, N., Rebhi, R., Bennacer, R., Menni, Y., Ameur, H., Lorenzini, G., ... & Ahmad, H. (2021). Thermosolutal natural convection across an inclined square enclosure partially filled with a porous medium. Results in Physics, 21, 103821.

DOI: 10.1016/j.rinp.2021.103821

Google Scholar

[21] Lounis, S., Rebhi, R., Hadidi, N., Lorenzini, G., Menni, Y., Ameur, H., & Sidik, N. A. C. (2022). Thermo-Solutal Convection of Carreau-Yasuda Non-Newtonian Fluids in Inclined Square Cavities Under Dufour and Soret Impacts. CFD Letters, 14(3), 96-118

DOI: 10.37934/cfdl.14.3.96118

Google Scholar

[22] A. Bouras, M. Djezzar, H. Naji, C. Ghernoug. Numerical computation of double-diffusive natural convective flow within an elliptic-shape enclosure. International Communications in Heat and Mass Transfer. 57 (2014) 183-192.

DOI: 10.1016/j.icheatmasstransfer.2014.08.002

Google Scholar

[23] S.V. Patankar. Numerical Heat Transfer and Fluid Flow. NY, New York: McGraw‐Hill (1980) 113‐137.

Google Scholar

[24] E.F. Nogotov. Applications of Numerical Heat Transfer. New York, NY: McGraw‐Hill (1978) 122‐125.

Google Scholar

[25] M.M. Elshamy, M.N. Ozisik, J.P. Coulter. Correlation for laminar natural convection between confocal horizontal elliptical cylinders. Numer Heat Transfer A. 18 (1990) 95‐112.

DOI: 10.1080/10407789008944785

Google Scholar

[26] T. Tayebi, A.J. Chamkha, M. Djezzar, A. Bouzerzour. Natural Convective Nanofluid Flow in an Annular Space Between Confocal Elliptic Cylinders. Journal of Thermal Science and Engineering Applications. 9 (2017).

DOI: 10.1115/1.4034599

Google Scholar