[1]
Gundupalli, S. Paulraj, S. Hait, and A. Thakur, A review on automated sorting of source-separated municipal solid waste for recycling, Waste management. 60 (2017) 56-74
DOI: 10.1016/j.wasman.2016.09.015
Google Scholar
[2]
S. Kaza, L. Yao, P. Bhada-Tata, and FV. Woerden, What a waste 2.0: a global snapshot of solid waste management to 2050, World Bank Publications, 2018. [Online]. Available: https://openknowledge.worldbank.org/handle/10986/30317
DOI: 10.1596/978-1-4648-1329-0
Google Scholar
[3]
S. Shahzad, R. Hameed, SAA Gillani, MR. Riaz, U. Hameed, and K. Gulzar, Experimental Study on the Behaviour of Short Columns Confined by Waste Plastic Bags-Epoxy Composites, In International Journal of Engineering Research in Africa. 62 (2022) 57-69
DOI: 10.4028/p-kx14u4
Google Scholar
[4]
Population Census Pakistan Bureau of Statistics. Population census — pakistan bureau of statistics. 2017 [cited 2022 Dec 15]. Available at: https://www.pbs.gov.pk/content/population-census
DOI: 10.3886/icpsr31082
Google Scholar
[5]
K. Nadeem, S. Shahzad, A. Hassan, M. Usman Younus, SAA. Gillani, and K. Farhan, Municipal solid waste generation and its compositional assessment for efficient and sustainable infrastructure planning in an intermediate city of Pakistan, Environmental Technology (2022) 1-19
DOI: 10.1080/09593330.2022.2054370
Google Scholar
[6]
WWF-Paksitan, Tackling plastic polution in Pakistan (2021) [cited 2022 Dec 15]. Available at: https://www.wwfpak.org/issues/plastic_pollution/
Google Scholar
[7]
UNDP, Rethinking Pakistan's Relationship with Plastics (2021) [cited 2022 Dec 15]. Available at: https://www.undp.org/sites/g/files/zskgke326/files/migration/pk/Intelligence-Report.pdf
Google Scholar
[8]
Plastics the facts, accessed on: 8 octobre 2022. [online]. Available at: https://plasticseurope.org/wp-content/uploads/2021/10/2019-Plastics-the-facts.pdf
Google Scholar
[9]
R. Le Blanc,How long does it take garbage to decompose, The Balance, 2017.
Google Scholar
[10]
W. d'Ambrières, Plastics recycling worldwide: current overview and desirable changes , Field Actions Sci. Rep. J. Field Actions, 19 (2019) 12‑21. Available at: https://journals.openedition.org/factsreports/5102
Google Scholar
[11]
A. K.-L. Jnr, D. Yunana, P. Kamsouloum, M. Webster, D. C. Wilson, et C. Cheeseman, Recycling waste plastics in developing countries: Use of low-density polyethylene water sachets to form plastic bonded sand blocks, Waste Manag., 80 (2018) 112‑118
DOI: 10.1016/j.wasman.2018.09.003
Google Scholar
[12]
J. Xu, Y. Shi, Y. Xie, et S. Zhao, A BIM-Based construction and demolition waste information management system for greenhouse gas quantification and reduction , J. Clean. Prod., 229 (2019) 308‑324
DOI: 10.1016/j.jclepro.2019.04.158
Google Scholar
[13]
R. M. Andrew, Global CO2 emissions from cement production, 1928–2018, Earth Syst. Sci. Data, 11 (2019) 1675‑1710
DOI: 10.5194/essd-11-1675-2019
Google Scholar
[14]
China energy efficiency report, accessed on: 8 octobre 2022. [Online]. Available at: https://www.energycharter.org/fileadmin/DocumentsMedia/EERR/EER-China_ENG.pdf
Google Scholar
[15]
V. W. Tam, Economic comparison of concrete recycling: A case study approach, Resour. Conserv. Recycl., 52 (2008) 821‑828
DOI: 10.1016/j.resconrec.2007.12.001
Google Scholar
[16]
A. Akhtar et A. K. Sarmah, Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective , J. Clean. Prod., 86 (2018) 262‑281
DOI: 10.1016/j.jclepro.2018.03.085
Google Scholar
[17]
K. Iqbal et M. A. Baig, Quantitative and Qualitative Estimation of Construction Waste Material in Punjab Province of Pakistan, Am J Agric Env. Sci, 16 (2016) 770‑779
Google Scholar
[18]
J. De Brito et N. Saikia, Recycled aggregate in concrete: use of industrial, construction and demolition waste. Springer Science & Business Media, (2012)
DOI: 10.1007/978-1-4471-4540-0
Google Scholar
[19]
A. A. Mohammed, Flexural behavior and analysis of reinforced concrete beams made of recycled PET waste concrete , Constr. Build. Mater., 155 (2017) 593‑604
DOI: 10.1016/j.conbuildmat.2017.08.096
Google Scholar
[20]
C. Marthong et S. Marthong, An experimental study on the effect of PET fibers on the behavior of exterior RC beam-column connection subjected to reversed cyclic loading, in Structures, 5 (2016) 175‑185
DOI: 10.1016/j.istruc.2015.11.003
Google Scholar
[21]
D. Foti, Use of recycled waste pet bottles fibers for the reinforcement of concrete, Compos. Struct., 96 (2013) 396‑404
DOI: 10.1016/j.compstruct.2012.09.019
Google Scholar
[22]
R. I. Umasabor et S. C. Daniel, The effect of using polyethylene terephthalate as an additive on the flexural and compressive strength of concrete , Heliyon, 6 (2020) e04700
DOI: 10.1016/j.heliyon.2020.e04700
Google Scholar
[23]
F. Fraternali, I. Farina, C. Polzone, E. Pagliuca, et L. Feo, On the use of R-PET strips for the reinforcement of cement mortars, Compos. Part B Eng., 46 (2013) 207‑210
DOI: 10.1016/j.compositesb.2012.09.070
Google Scholar
[24]
Contreras-Llanes, Manuel, Maximina Romero, Manuel Jesús Gázquez, and Juan Pedro Bolívar. "Recycled Aggregates from Construction and Demolition Waste in the Manufacture of Urban Pavements." Materials 14, no. 21 (2021): 6605
DOI: 10.3390/ma14216605
Google Scholar
[25]
Balasubramanian, G., D. Salvia, and D. Bharathi. "Manufacture of concrete paver blocks with recycled demolition waste." Electronic Journal of Structural Engineering 20 (2020): 78-82
DOI: 10.56748/ejse.20249
Google Scholar
[26]
Özalp, Fatih, Halit Dilşad Yılmaz, Mustafa Kara, Ömer Kaya, and Aylin Şahin. "Effects of recycled aggregates from construction and demolition wastes on mechanical and permeability properties of paving stone, kerb and concrete pipes." Construction and Building Materials 110 (2016): 17-23
DOI: 10.1016/j.conbuildmat.2016.01.030
Google Scholar
[27]
Kumar, Gyanendra, Sandeep Shrivastava, and R. C. Gupta. "Paver blocks manufactured from construction & demolition waste." Materials Today: Proceedings 27 (2020) 311-317
DOI: 10.1016/j.matpr.2019.11.039
Google Scholar
[28]
Seun Kolade, De Montfort University, Muyiwa Oyinlola." African digital innovators are turning plastic waste into value -- but there are gaps". The conversation, Published: August 15, 2022.
Google Scholar
[29]
S. B. Kim, N. H. Yi, H. Y. Kim, J.-H. J. Kim, et Y.-C. Song, Material and structural performance evaluation of recycled PET fiber reinforced concrete, Cem. Concr. Compos., 32 (2010) 232‑240
DOI: 10.1016/j.cemconcomp.2009.11.002
Google Scholar
[30]
S. Shahidan, Concrete incorporated with optimum percentages of recycled polyethylene terephthalate (PET) bottle fiber, Int. J. Integr. Eng., 10 (2018). https://publisher.uthm.edu.my/ojs/index.php/ijie/article/view/1755
DOI: 10.30880/ijie.2018.10.01.001
Google Scholar
[31]
A. K. Singh, R. Bedi, et B. S. Kaith, Composite materials based on recycled polyethylene terephthalate and their properties–A comprehensive review, Compos. Part B Eng., 219 (2021) 108928
DOI: 10.1016/j.compositesb.2021.108928
Google Scholar
[32]
Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. https://www.astm.org/c0127-15.html (Accessed on 9 octobre 2022).
Google Scholar
[33]
Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. https://www.astm.org/c0128-15.html (Accessed on 9 octobre 2022).
Google Scholar
[34]
Standard Test Method for Total Evaporable Moisture Content of Aggregate by Drying. https://www.astm.org/c0566-19.html (Accessed on 9 octobre 2022).
Google Scholar
[35]
E. Standards, BS 812-105.1:1989 Testing aggregates. Methods for determination of particle shape Flakiness index. https://www.en-standard.eu/bs-812-105-1-1989-testing-aggregates-methods-for-determination-of-particle-shape-flakiness-index/ (Accessed on 9 octobre 2022).
DOI: 10.3403/00134001u
Google Scholar
[36]
Testing aggregates / Methods for determination of particle shape Section 105.2, Elongation index of coarse aggregate. London: B.S.I., 1990.
DOI: 10.3403/00216305u
Google Scholar
[37]
Standard Test Method for Bulk Density ("Unit Weight") and Voids in Aggregate. https://www.astm.org/c0029_c0029m-97.html (Accessed on 9 octobre 2022).
Google Scholar
[38]
Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. https://www.astm.org/c0131_c0131m-20.html (Accessed on 9 octobre 2022).
DOI: 10.1520/c0131_c0131m-14
Google Scholar
[39]
E. Standards, BS 812-110:1990 Testing aggregates Methods for determination of aggregate crushing value (ACV), https://www.en-standard.eu/bs-812-110-1990-testing-aggregates-methods-for-determination-of-aggregate-crushing-value-acv/ (Accessed on 9 octobre 2022).
DOI: 10.3403/00218276
Google Scholar
[40]
E. Standards, BS 812-111:1990 Testing aggregates Methods for determination of ten per cent fines value (TFV) , https://www.en-standard.eu/bs-812-111-1990-testing-aggregates-methods-for-determination-of-ten-per-cent-fines-value-tfv/ (Accessed on 9 octobre 2022).
DOI: 10.3403/00218288u
Google Scholar
[41]
E. Standards, BS 812-112:1990 Testing aggregates Method for determination of aggregate impact value (AIV), https://www.en-standard.eu/bs-812-112-1990-testing-aggregates-method-for-determination-of-aggregate-impact-value-aiv/ (Accessed on 9 octobre 2022).
DOI: 10.3403/00218291
Google Scholar
[42]
L. Gungat, F. Anthony, AK. Mirasa, H. Asrah, N. Bolong, NA. Ispal, and SJ Matlan, Development of Paver Block Containing Recycled Plastic, In IOP Conference Series: Materials Science and Engineering, 1144 (2021) 012094
DOI: 10.1088/1757-899X/1144/1/012094
Google Scholar
[43]
T. R. Naik, V. M. Malhotra, et J. S. Popovics, The ultrasonic pulse velocity method, in Handbook on Nondestructive Testing of Concrete, Second Edition, CRC Press, (2003) 8‑1.
DOI: 10.1201/9781420040050.ch8
Google Scholar
[44]
C. Astm, 597, Standard test method for pulse velocity through concrete, ASTM Int. West Conshohocken PA, 2009
DOI: 10.1520/C0597-16
Google Scholar
[45]
C.-C. Vu, O. Plé, J. Weiss, et D. Amitrano, Revisiting the concept of characteristic compressive strength of concrete, Constr. Build. Mater., 263 (2020) 120126
DOI: 10.1016/j.conbuildmat.2020.120126
Google Scholar
[46]
Jassim, Ahmad K. "Recycling of polyethylene waste to produce plastic cement." Procedia manufacturing 8 (2017): 635-642
DOI: 10.1016/j.promfg.2017.02.081
Google Scholar
[47]
Thiam, Moussa, and Mamadou Fall. "Mechanical, physical and microstructural properties of a mortar with melted plastic waste binder." Construction and Building Materials, 302 (2021) 124190
DOI: 10.1016/j.conbuildmat.2021.124190
Google Scholar
[48]
Thiam, Moussa, and Mamadou Fall. "Engineering properties of a building material with melted plastic waste as the only binder." Journal of Building Engineering, 44 (2021) 102684
DOI: 10.1016/j.jobe.2021.102684
Google Scholar
[49]
Dalhat, Muhammad A., and Wahhab, H. Al-A. "Cement-less and asphalt-less concrete bounded by recycled plastic." Construction and Building Materials, 119 (2016), 206-214
DOI: 10.1016/j.conbuildmat.2016.05.010
Google Scholar
[50]
National Standards of the People's Republic of China, Precast Concrete Paving Units (GB/T 28635-2012), Standards Press of China, Beijing, 2012.
Google Scholar
[51]
A231.1-14/A231.2-14, Standards Council of Canada - Conseil canadien des normes. https://www.scc.ca/en/standardsdb/standards/27341 (Accessed on 15 December 2022).
Google Scholar
[52]
Standard Specification for Solid Concrete Interlocking Paving Units. https://www.astm.org/c0936_c0936m-21b.html (Accessed on 15 December 2022).
Google Scholar
[53]
Standard Specification for Heavy Vehicular Paving Brick. https://www.astm.org/c1272-22.html (Accessed on 15 December 2022).
Google Scholar
[54]
Standard Specification for Pedestrian and Light Traffic Paving Brick. https://www.astm.org/c0902-22.html (Accessed on 15 December 2022).
Google Scholar
[55]
Municipal infrastructure technical specification (MITS) 07-Segmental Paving. https://www.cityservices.act.gov.au/__data/assets/pdf_file/0011/1387136/MITS-07-Segmental-Paving-1-0.pdf (Accessed on 15 December 2022).
Google Scholar