The Effect of the Geometrical Parameter and Stacking Sequence on Damage Behavior of Unidirectional Carbon / Epoxy Laminate

Article Preview

Abstract:

In this work, an experimental test series was carried out in order to evaluate the influence of the geometry of the specimen and stacking sequence on macroscopic behavior and the failure modes. A CFRP prepreg unidirectional was used to perform the tested specimens according to ASTM D790 standard. Five main lay-up configurations have been analyzed: [0]12, [±30]3s, [±45]3s, [±80]3s, and [0/90]3s subjected to flexural loading. The macroscopic behavior was followed by an MTS machine equipped with a bending fixture. A digital microscope is used to follow the microscopic failure modes during loading. These laminates exhibit a more complex behavior due to coupling effects and the combination of different failure modes. However, the most predominant damage observed is delamination accompanied with matrix cracking. Furthermore, the present work has shown a linear behavior of [0]12, [±80]3s, [0/90]3s, and a distinctive behavior of [±45]3s and [±30]3s laminate under flexural loading due to its pseudo ductile behavior.

You might also be interested in these eBooks

Info:

Pages:

1-16

Citation:

Online since:

June 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Aklilu, S. Adali, and G. Bright, "Experimental characterization of hybrid and non-hybrid polymer composites at elevated temperatures, Int. J. Eng. Res. Africa, 36 (2018) 37–52.

DOI: 10.4028/www.scientific.net/jera.36.37

Google Scholar

[2] M. Herráez, N. Pichler, G. A. Pappas, C. Blondeau, and J. Botsis, Experiments and numerical modelling on angle-ply laminates under remote mode II loading, Compos. Part A Appl. Sci. Manuf., 134 (2020)105886.

DOI: 10.1016/j.compositesa.2020.105886

Google Scholar

[3] S. S. Rahimian Koloor, A. Karimzadeh, N. Yidris, M. Petrů, M. R. Ayatollahi, and M. N. Tamin, An energy-based concept for yielding of multidirectional FRP composite structures using a mesoscale lamina damage model, Polymers (Basel)., 12, 1 (2020) 157.

DOI: 10.3390/polym12010157

Google Scholar

[4] R. CZARNEK, D. POST, and C. HERAKOVICH, Edge Effects in Composites by Moiré Interferometry, Exp. Tech., 7, 1 (1983) 18–21.

DOI: 10.1111/j.1747-1567.1983.tb01664.x

Google Scholar

[5] C. T. Herakovich, D. Post, M. B. Buczek, and R. Czarnek, Free Edge Strain Concentrations in Real Composite Laminates: Experimental-Theoretical Correlation, J. Appl. Mech., 52, 4 (1985) 787–793.

DOI: 10.1115/1.3169147

Google Scholar

[6] C. T. Herakovich, Edge effects and delamination failures, J. Strain Anal. Eng. Des., 24, 4 (1989) 245–252.

Google Scholar

[7] J. Echaabi, F. Trochu, X. T. Pham, and M. Ouellet, Theoretical and Experimental Investigation of Failure and Damage Progression of Graphite-Epoxy Composites in Flexural Bending Test, J. Reinf. Plast. Compos., 15, 7 (1996) 740–755.

DOI: 10.1177/073168449601500707

Google Scholar

[8] Y. Benbouras, M. Bellahkim, A. Maziri, E. Mallil, and J. Echaabi, An analytical and experimental study of the nonlinear behaviour of a carbon/epoxy under a three-point bending test, Plast. Rubber Compos., 51, 3 (2022) 145-153.

DOI: 10.1080/14658011.2021.1950457

Google Scholar

[9] Y. Benbouras, M. Bellahkim, A. Maziri, E. Mallil, and J. Echaabi, Nonlinear modeling of the failure of a graphite epoxy under a three-point bending test:, Polym. Polym. Compos., 28, 2 (2019) 119–139.

DOI: 10.1177/0967391119866597

Google Scholar

[10] M. Bellahkim, Y. Benbouras, A. Maziri, E. Mallil, and J. Echaabi, The Effect of Boundary Conditions and Stacking Sequence on the Nonlinear Behavior of Laminated Composite Plates in Bending, Int. J. Eng. Res. Africa, 57 (2021) 33–47.

DOI: 10.4028/www.scientific.net/jera.57.33

Google Scholar

[11] C. T. Herakovich, Influence of layer thickness on the strength of angle-ply laminates, J. Compos. Mater.,16, 3(1982) 216–227.

DOI: 10.1177/002199838201600305

Google Scholar

[12] C. T. Herakovich, On the Relationship between Engineering Properties and Delamination of Composite Materials, J. Compos. Mater.,15, 4 (1981) 336–348.

DOI: 10.1177/002199838101500404

Google Scholar

[13] C. T. Herakovich, Failure modes and damage accumulation in laminated composites with free edges, Compos. Sci. Technol., 36, 2(1989) 105–119.

DOI: 10.1016/0266-3538(89)90082-1

Google Scholar

[14] A. Diaz Diaz and J. F. Caron, Interface plasticity and delamination onset prediction, Mech. Mater., 38, 7 (2006) 648–663.

DOI: 10.1016/j.mechmat.2005.12.001

Google Scholar

[15] N. R. J. Hynes et al., Effect of stacking sequence of fibre metal laminates with carbon fibre reinforced composites on mechanical attributes: Numerical simulations and experimental validation, Compos. Sci. Technol., 221 (2022) 109303.

DOI: 10.1016/j.compscitech.2022.109303

Google Scholar

[16] S. C. Das et al., Effect of stacking sequence on the performance of hybrid natural/synthetic fiber reinforced polymer composite laminates, Compos. Struct., 276 (2021) 114525.

DOI: 10.1016/j.compstruct.2021.114525

Google Scholar

[17] F. Pinto, L. Boccarusso, D. De Fazio, S. Cuomo, M. Durante, and M. Meo, Carbon/hemp bio-hybrid composites: Effects of the stacking sequence on flexural, damping and impact properties, Compos. Struct., 242, (2020) 112148.

DOI: 10.1016/j.compstruct.2020.112148

Google Scholar

[18] Y. Yuan, X. Yao, B. Liu, H. Yang, and H. Imtiaz, Failure modes and strength prediction of thin ply CFRP angle-ply laminates, Compos. Struct., 176 (2017) 729–735.

DOI: 10.1016/j.compstruct.2017.06.005

Google Scholar

[19] M. A. Caminero, G. P. Rodríguez, and V. Muñoz, Effect of stacking sequence on Charpy impact and flexural damage behavior of composite laminates, Compos. Struct., 136 (2016) 345-357.

DOI: 10.1016/j.compstruct.2015.10.019

Google Scholar

[20] ASTM D790, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, Am. Soc. Test. Mater., 1997.

DOI: 10.1520/d0790-10

Google Scholar

[21] Berthelot, J. M., & Ling, F. F., Composite Materials. Mechanical behaviour and structural analysis, Springer, New York, 1999.

Google Scholar

[22] F. Mujika, On the effect of shear and local deformation in three-point bending tests, Polym. Test., 26, 7 (2007) 869–877.

DOI: 10.1016/j.polymertesting.2007.06.002

Google Scholar

[23] G. Caprino, P. Iaccarino, and A. Lamboglia, The effect of shear on the rigidity in three-point bending of unidirectional CFRP laminates made of T800H/3900-2, Compos. Struct., 88, 3 (2009) 360–366.

DOI: 10.1016/j.compstruct.2008.04.014

Google Scholar

[24] J. D. Fuller and M. R. Wisnom, Pseudo-ductility and damage suppression in thin ply CFRP angle-ply laminates, Compos. Part A Appl. Sci. Manuf., 69 (2015) 64–71.

DOI: 10.1016/j.compositesa.2014.11.004

Google Scholar

[25] M. Jalalvand, G. Czél, and M. R. Wisnom, Damage analysis of pseudo-ductile thin-ply UD hybrid composites - A new analytical method, Compos. Part A Appl. Sci. Manuf., 69 (2015) 83–93.

DOI: 10.1016/j.compositesa.2014.11.006

Google Scholar

[26] B. W. SMITH, Fractography for continuous fiber composites: Engineered materials handbook, Compos. Ohio, USA ASM Int., 1 (1993) 786–793.

Google Scholar

[27] M. C. S. Moreno and S. H. Muñoz, Pseudo-ductile effects in±45∘ angle-ply CFRP laminates under uniaxial loading: Compression and cyclic tensile test, Compos. Part B Eng., 233 (2022) 109631.

DOI: 10.1016/j.compositesb.2022.109631

Google Scholar