A Hybrid Artificial Intelligence-Based System for Supporting Eco-Industrialization of Complex Manufacturing Processes

Article Preview

Abstract:

Since the industrialization phase is one of the main phases of the product development cycle, an original hybrid flexible automated system is developed in this paper in order to support production eco-processes designers’ decision making. It is based on three different artificial intelligence tools, namely the fuzzy Ontologies, the cases based reasoning and the rules based reasoning, which have been integrated in one system. Actually, the proposed system is composed of different modules that are well described in details thereafter. In the end of this paper, a case of study is presented in order to illustrate the efficacy of the developed intelligent system.

You might also be interested in these eBooks

Info:

Pages:

147-171

Citation:

Online since:

June 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Baader, D. Calvanese, D. McGuinness, P. Patel-Schneider, D. Nardi, The Description Logic Handbook: Theory, Implementation and Applications, in: Cambridge University press, 2003.

DOI: 10.1017/cbo9780511711787

Google Scholar

[2] R. Calegari, G. Ciatto, V. Mascardi, A. Omicini, Logic-based technologies for multi-agent systems: A systematic literature review, Autonomous Agents and Multi-Agent Systems, (2021), 35(1), 1-67.

DOI: 10.1007/s10458-020-09478-3

Google Scholar

[3] S. Calegari, D. Ciucci, Fuzzy ontology, fuzzy description logics and fuzzy-owl, in: International Workshop on Fuzzy Logic and Applications, Berlin, Heidelberg , Springer, (2007), p.118–126.

DOI: 10.1007/978-3-540-73400-0_15

Google Scholar

[4] E. M. H. Saeed, Article Review: Survey Fuzzy Logic and Aprior Algorithms Employed for E-learning Environment. Turkish Journal of Computer and Mathematics Education (TURCOMAT), (2021), 12(8), pp.60-69.

Google Scholar

[5] C. Carlsson, M. Brunelli, J. Mezei. Decision making with a fuzzy ontology, in: Soft. Comput. (16), 2012, p.1143–1152.

DOI: 10.1007/s00500-011-0789-x

Google Scholar

[6] B. Díaz-Agudo & P.A. González-Calero. An architecture for knowledge intensive CBR systems, in: European workshop on advances in case-based reasoning, Berlin, Heidelberg, 2000, pp.37-48. Springer.

DOI: 10.1007/3-540-44527-7_5

Google Scholar

[7] A. Martin, S. Emmenegger, K. Hinkelmann & B. Thönssen. A viewpoint-based case-based reasoning approach utilising an enterprise architecture ontology for experience management, in: Enterprise Information Systems. 11(4), 2017, pp.551-575.

DOI: 10.1080/17517575.2016.1161239

Google Scholar

[8] TP. Lim, W. Husain and N. Zakaria. Recommender System for Personalised Wellness Therapy, International Journal of Advanced Computer Science and Applications. 4 (2013) 54-60.

DOI: 10.14569/ijacsa.2013.040909

Google Scholar

[9] P.K. Singh & P. Sarkar. Eco-design approaches for developing eco-friendly products: a review, Advances in Industrial and Production Engineering, (2019) 185-192.

DOI: 10.1007/978-981-13-6412-9_17

Google Scholar

[10] Z. Xu, Z. Lv, J. Li, H. Sun & Z. Sheng. A Novel Perspective on Travel Demand Prediction Considering Natural Environmental and Socioeconomic Factors, in:  IEEE Intelligent Transportation Systems Magazine, 2022.

DOI: 10.1109/mits.2022.3162901

Google Scholar

[11] R. Vinuesa et al. The role of artificial intelligence in achieving the Sustainable Development Goals, in: Nature communications, 11(1), 2020, pp.1-10.

Google Scholar

[12] Z. Xu, J. Li, Z. Lv, C. Dong & L. Fu. A classification method for urban functional regions based on the transfer rate of empty cars, in: IET Intelligent Transport Systems, 16(2), 2022, pp.133-147.

DOI: 10.1049/itr2.12134

Google Scholar

[13] E.R. Platcheck, L. Schaeffer, W. Jr. Kindlein and L. Candido. Methodology of ecodesign for the development of more sustainable electro-electronic equipment. J. Clean. Prod. 16, 2008, p.75–86.

DOI: 10.1016/j.jclepro.2006.10.006

Google Scholar

[14] G. Taddese, S. Durieux & E. Duc. Sustainability performance indicators for additive manufacturing: a literature review based on product life cycle studies, The International Journal of Advanced Manufacturing Technology.107(7) (2020) 3109-3134.

DOI: 10.1007/s00170-020-05249-2

Google Scholar

[15] IHOBE. Manual práctico de ecodiseño: operativa de implantación en siete pasos,2000.

Google Scholar

[16] L.M. Agudelo Gutierrez. Aide à décision en conception préliminaire par l'estimation du poids de la performance environnementale (Doctoral dissertation, Paris, ENSAM), 2016.

Google Scholar

[17] P. Paulraj et al. Environmentally conscious manufacturing and life cycle analysis: a state-of-the-art survey, Journal of Nanomaterials (2022).

Google Scholar

[18] C. Y. Ng & W. C Tang. Evaluation of design options for green product development: a combined Cuckoo search and life cycle assessment approach, The International Journal of Life Cycle Assessment 27(5) (2022) 665-679.

DOI: 10.1007/s11367-022-02056-7

Google Scholar

[19] A. Ghoroghi, Y. Rezgui, I. Petri & T. Beach. Advances in application of machine learning to life cycle assessment: a literature review, The International Journal of Life Cycle Assessment (2022) 1-24.

DOI: 10.1007/s11367-022-02030-3

Google Scholar

[20] M. Germani, M. Dufrene, M. Mandolini, M. Marconi, P. Zwolinski. Integrated software platform for green engineering design and product sustainability, in: Re-engineeringManufacturing for Sustainability (2013, p.87–92. Springer, Singapore.

DOI: 10.1007/978-981-4451-48-2_14

Google Scholar

[21] M.A. Cusenza, S. Bobba, F. Ardente, M.Cellura & F. Di Persio. Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles, in: Journal of cleaner production, 215, 2019, pp.634-649.

DOI: 10.1016/j.jclepro.2019.01.056

Google Scholar

[22] D. Böckin & A. M Tillman. Environmental assessment of additive manufacturing in the automotive industry, Journal of Cleaner Production  226 (2019) 977-987.

DOI: 10.1016/j.jclepro.2019.04.086

Google Scholar

[23] X. Zhang, M. Zhang, H. Zhang, Z. Jiang, C. Liu & W. Cai. A review on energy, environment and economic assessment in remanufacturing based on life cycle assessment method, Journal of Cleaner Production (2020) 255-120160.

DOI: 10.1016/j.jclepro.2020.120160

Google Scholar

[24] C. Abadi, I. Manssouri & A. Abadi. A Fuzzy Ontology Based Approach to Support Product Eco-Design, in:  International Conference on Artificial Intelligence & Industrial Applications, Springer, Cham, 2020, pp.1-13.

DOI: 10.1007/978-3-030-51186-9_1

Google Scholar

[25] E. Sdrolia & G. Zarotiadis. A comprehensive review for green product term: From definition to evaluation, Journal of Economic Surveys 33(1) (2019) 150-178.

DOI: 10.1111/joes.12268

Google Scholar

[26] D. Jugend, M. A. P. Pinheiro, J. V. R Luiz, A. V. Junior & P. ACauchick-Miguel. Achieving environmental sustainability with ecodesign practices and tools for new product development. In Innovation strategies in environmental science, Elsevier, 2020, pp.179-207.

DOI: 10.1016/b978-0-12-817382-4.00006-x

Google Scholar

[27] S. K Takalo & H. S Tooranloo. Green innovation: A systematic literature review, Journal of Cleaner Production 279 (2021) 122474.

DOI: 10.1016/j.jclepro.2020.122474

Google Scholar

[28] F. Bobillo, U. Straccia. The fuzzy ontology reasoner fuzzyDL, in: Knowl.-Based Syst. (95), 2016, p.12–34.

DOI: 10.1016/j.knosys.2015.11.017

Google Scholar

[29] C. Abadi, I. Manssouri, , et A. Abadi. An Artificial-Intelligent-Based System to Automate the Design of Complex Mechanical Products, International Journal of Engineering Research in Africa, Trans Tech Publications Ltd. (2022) 247-274.

DOI: 10.4028/www.scientific.net/jera.58.247

Google Scholar

[30] A. Abadi, H. Ben-Azza, S. Sekkat, E.M. Zemmouri. A Fuzzy Ontology-based approach for multi-criteria decision-making: a use case in supplier selection, in: Congrès International Du Génie Industriel Et Du Management Des Systèmes, Meknes, 2017.

Google Scholar