[1]
S. Janet L., R. Jay, and S. Freyr, Renewables 2018-Global status report. A comprehensive annual overview of the state of renewable energy. Advancing the global renewable energy transition-Highlights of the REN21 Renewables 2018 Global Status Report in perspective. (2018).
DOI: 10.3390/resources8030139
Google Scholar
[2]
K. Sasujit, N. Homdoung, and N. Tippayawong, Production of Producer Gas from Densified Agricultural Biomass in Downdraft Gasifier and Its Application to Small Diesel Engines, Energy Eng. 119 (2022) 2150-2167.
DOI: 10.32604/ee.2022.022069
Google Scholar
[3]
A. Al-Farraji and H. Taofeeq, Effect of elevated temperature and silica sand particle size on minimum fluidization velocity in an atmospheric bubbling fluidized bed, Chinese J. Chem. Eng. 28 (2020) 2985–2992
DOI: 10.1016/j.cjche.2020.07.054
Google Scholar
[4]
A. Ghaly, A. Ergudenler, and V. Ramakrishnan, Effect of Distributor Plate Configuration on Pressure Drop in a Bubbling Fluidized Bed Reactor, Adv. Res. 3 (2015) 251–268.
DOI: 10.9734/air/2015/8240
Google Scholar
[5]
Y.M. Chang, C. M. Chou, K. T. Su, C. Y. Hung, and C. H. Wu, Elutriation characteristics of fine particles from bubbling fluidized bed incineration for sludge cake treatment, Waste Manag. 25 (2005) 249–263.
DOI: 10.1016/j.wasman.2004.08.013
Google Scholar
[6]
D. Mandal, D. Sathiyamoorthy, and M. Vinjamur, Void fraction and effective thermal conductivity of binary particulate bed, Fusion Eng. Des. 88 (2013) 216–225.
DOI: 10.1016/j.fusengdes.2013.02.033
Google Scholar
[7]
M. Rasteh, F. Farhadi, and G. Ahmadi, Empirical models for minimum fluidization velocity of particles with different size distribution in tapered fluidized beds, Powder Technol. 338, (2018) 563–575.
DOI: 10.1016/j.powtec.2018.07.077
Google Scholar
[8]
R. Chirone, M. Poletto, D. Barletta, and P. Lettieri, The effect of temperature on the minimum fluidization conditions of industrial cohesive particles, Powder Technol. 362 (2020) 307–322.
DOI: 10.1016/j.powtec.2019.11.102
Google Scholar
[9]
Y. Shao, J. Gu, W. Zhong, and A. Yu, Determination of minimum fluidization velocity in fluidized bed at elevated pressures and temperatures using CFD simulations, Powder Technol. 350 (2019) 81–90.
DOI: 10.1016/j.powtec.2019.03.039
Google Scholar
[10]
S. Gosavi, N. Kulkarni, C. S. Mathpati, and D. Mandal, CFD modeling to determine the minimum fluidization velocity of particles in gas-solid fluidized bed at different temperatures, Powder Technol. 327 (2018) 109–119.
DOI: 10.1016/j.powtec.2017.12.026
Google Scholar
[11]
S. Shrestha, J. Q. Gan, and Z. Y. Zhou, Micromechanical analysis of bubbles formed in fluidized beds operated with a continuous single jet, Powder Technol. 357 (2019) 398–407.
DOI: 10.1016/j.powtec.2019.08.091
Google Scholar
[12]
R. Issaoui and L. Ben Mansour, Experimental study of temperature effects on bubble characteristics and gas holdup in electroflotation column, Desalin. Water Treat. 162 (2019) 186-192.
DOI: 10.5004/dwt.2019.24407
Google Scholar
[13]
N. Nemati, R. Zarghami, and N. Mostoufi, Investigation of Hydrodynamics of High-Temperature Fluidized Beds by Pressure Fluctuations, Chem. Eng. Technol. 39 (2016) 1527–1536.
DOI: 10.1002/ceat.201500443
Google Scholar
[14]
H. Zhou, H. Gao, Z. Fang, J. Yang, and M. Wu, Analysis of Gas-Solid Flow Characteristics in a Spouted Fluidized Bed Dryer by Means of Computational Particle Fluid Dynamics, Fluid Dynamics & Materials Processing. 16 (2020) 813-826
DOI: 10.32604/fdmp.2020.010150
Google Scholar
[15]
U. Kumar and V. K. Agarwal, Simulation of 3D gas–solid fluidized bed reactor hydrodynamics, Part. Sci. Technol. 35 (2017) 1–13.
DOI: 10.1080/02726351.2015.1119227
Google Scholar
[16]
C. Loha, H. Chattopadhyay, and P. K. Chatterjee, Euler-Euler CFD modeling of fluidized bed: Influence of specularity coefficient on hydrodynamic behavior, Particuology, 11 (2013) 673–680.
DOI: 10.1016/j.partic.2012.08.007
Google Scholar
[17]
Y. Behjat, S. Shahhosseini, and S. H. Hashemabadi, CFD modeling of hydrodynamic and heat transfer in fluidized bed reactors, Int. Commun. Heat Mass Transf. 35 (2008) 357–368.
DOI: 10.1016/j.icheatmasstransfer.2007.09.011
Google Scholar
[18]
S. I. Ngo, Y. Il Lim, D. Lee, and M. W. Seo, Flow behavior and heat transfer in bubbling fluidized-bed with immersed heat exchange tubes for CO2 methanation, Powder Technol. 380 (2021) 462–474.
DOI: 10.1016/j.powtec.2020.11.027
Google Scholar
[19]
N. Xie, F. Battaglia, and S. Pannala, Effects of using two- versus three-dimensional computational modeling of fluidized beds. Part I, hydrodynamics, Powder Technol. 182 (2008) 1–13.
DOI: 10.1016/j.powtec.2007.07.005
Google Scholar
[20]
J. Chang, G. Wang, J. Gao, K. Zhang, H. Chen, and Y. Yang, CFD modeling of particle – particle heat transfer in dense gas-solid fl uidized beds of binary mixture, Powder Technol. 217 (2012) 50–60.
DOI: 10.1016/j.powtec.2011.10.008
Google Scholar
[21]
Z. Fu, J. Zhu, S. Barghi, Y. Zhao, Z. Luo, and C. Duan, Minimum fluidization velocity of binary mixtures of medium particles in the air dense medium fluidized bed, Chem. Eng. Sci. 207 (2019) 194–201.
DOI: 10.1016/j.ces.2019.06.005
Google Scholar
[22]
A. Al-Akaishi, A. Valera-Medina, C. T. Chong, and R. Marsh, CFD Analysis of the Fluidised Bed Hydrodynamic Behaviour inside an Isothermal Gasifier with different Perforated Plate Distributors, in Energy Procedia. 142 (2017) 835–840.
DOI: 10.1016/j.egypro.2017.12.134
Google Scholar
[23]
D. A. Dos Santos, S. Baluni, and A. Bück, Eulerian multiphase simulation of the particle dynamics in a fluidized bed opposed gas jet mill, Processes. 8 (2020) 1–19.
DOI: 10.3390/pr8121621
Google Scholar
[24]
W. Rong et al., Numerical study of the solid flow behavior in a rotating drum based on a multiphase CFD model accounting for solid frictional viscosity and wall friction, Powder Technol. 361 (2020) 87–98.
DOI: 10.1016/j.powtec.2019.10.034
Google Scholar
[25]
W. Rong et al., Numerical study of the solid flow behavior in a rotating drum based on a multiphase CFD model accounting for solid frictional viscosity and wall friction, Powder Technol. 361 (2020) 87–98.
DOI: 10.1016/j.powtec.2019.10.034
Google Scholar
[26]
F. Marchelli, Q. Hou, B. Bosio, E. Arato, and A. Yu, Comparison of different drag models in CFD-DEM simulations of spouted beds, Powder Technol. 360 (2020) 1253–1270.
DOI: 10.1016/j.powtec.2019.10.058
Google Scholar
[27]
V.H. Bhusare, M.K. Dhiman, D.V. Kalaga, S. Roy, and J.B. Joshi, CFD simulations of a bubble column with and without internals by using OpenFOAM, Chem. Eng. J. 317 (2017) 157–174.
DOI: 10.1016/j.cej.2017.01.128
Google Scholar
[28]
C. Loha, H. Chattopadhyay, and P. K. Chatterjee, Effect of coefficient of restitution in Euler-Euler CFD simulation of fluidized-bed hydrodynamics, Particuology. 15(2014) 170–177.
DOI: 10.1016/j.partic.2013.07.001
Google Scholar
[29]
I. Eslami Afrooz, C.M. Sinnathambi, S. Karuppanan, D. Ling, and C. Ching, CFD Simulation of Bubbling Fluidized Bed: Effect of Distributor Plate Orifice Pattern Configuration on Hydrodynamics of Gas-Solid Mixing, Eng. and Applied Sci. 11 (2016) 11954-11959.
DOI: 10.1002/mawe.201600761
Google Scholar
[30]
F. Alobaid et al., Progress in CFD Simulations of Fluidized Beds for Chemical and Energy Process Engineering, Prog. Energy Combust. Sci.p.91 (2022).
Google Scholar
[31]
D. Escudero and T.J. Heindel, Bed height and material density effects on fluidized bed hydrodynamics, Chem. Eng. Sci. 66 (2011) 3648–3655.
DOI: 10.1016/j.ces.2011.04.036
Google Scholar
[32]
N.J. Kulkarni, C.S. Mathpati, D. Mandal, and V. H. Dalvi, Minimum Fluidization Velocity of Intermediate Sized Particles in Conventional and Packed Fluidized Bed, Int. J. Chem. React. Eng. 17 (2019).
DOI: 10.1515/ijcre-2018-0321
Google Scholar
[33]
S. Shukrullah, M. A. Javed, M. Y. Naz, Y. Khan, M. A. S. Alkanhal, and H. Anwar, PIV and statistical analysis of a swirling bed process carried out using a hybrid model of axial blade distributor, Processes. 7 (2019).
DOI: 10.3390/pr7100697
Google Scholar