Scrutinization of Solar Thermal Energy and Variable Thermophysical Properties Effects on Non-Newtonian Nanofluid Flow

Article Preview

Abstract:

Nanofluids generate high values of convection heat transfer coefficients, low specific heat, and density, which improve the solar thermal energy performance by making it work effectively. By utilizing nanotechnology and solar thermal radiation, the modern world is moving in the direction of new technologies. Therefore, this research is communicated to explore the significance of solar thermal energy, variable properties on non-Newtonian nanofluid flow. However, to exemplify the fluid transport features of the Casson nanofluid (CF), the Buongiorno nanofluid model was utilized. Also, the Lie-group technique is used in the framework to develop similarity variables that will be used to reduce the number of independent variables in partial differential equations (PDEs) and is solved numerically by using the weighted residual Galerkin method (WRGM). The graphical findings revealed that when the variable viscosity parameter is increased, the fluid temperature decreases, while the presence of the solar radiation parameter has the opposite impact. Additionally, when the non-Newtonian parameter approaches infinity, the Casson fluid obeys the viscosity law. The report of this study will be of benefit to thermal and chemical engineering for nanotechnology advancement. KEYWORD: Solar Thermal Energy, Nanofluids, Non-Newtonian, weighted residual Galerkin method (WRGM).

You might also be interested in these eBooks

Info:

Pages:

93-115

Citation:

Online since:

June 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. T. Kartal, The role of consumption of energy, fossil sources, nuclear energy, and renewable energy on environmental degradation in top-five carbon producing countries, Renewable Energy. 184 (2022) 871-880.

DOI: 10.1016/j.renene.2021.12.022

Google Scholar

[2] J. Yu, Y. M. Tang, K. Y. Chau, R. Nazar, S. Ali, and W. Iqbal, Role of solar-based renewable energy in mitigating CO2 emissions: evidence from quantile-on-quantile estimation, Renewable Energy. 182 (2022) 216-226.

DOI: 10.1016/j.renene.2021.10.002

Google Scholar

[3] J. Selvaraj, V. Harikesavan, and A. Eshwanth, A novel application of concentrated solar thermal energy in foundries, Environmental Science Pollution Research. 23 (2016) 9312-9322.

DOI: 10.1007/s11356-015-4996-3

Google Scholar

[4] B. Buonomo, A. Di Pasqua, O. Manca, S. Nappo, and S. Nardini, Entropy generation analysis of laminar forced convection with nanofluids at pore length scale in porous structures with Kelvin cells, International Communications in Heat Mass Transfer. 132 (2022) 105883.

DOI: 10.1016/j.icheatmasstransfer.2022.105883

Google Scholar

[5] H. Ozawa, A. Ohmura, R. D. Lorenz, and T. Pujol, The second law of thermodynamics and the global climate system: A review of the maximum entropy production principle, Reviews of Geophysics. 41 (2003).

DOI: 10.1029/2002rg000113

Google Scholar

[6] C. Manjunath, J. Reddy, K. S. R. Reddy, I. G. Kumar, and S. J. M. T. P. Sanketh, Energy, exergy performance and analysis of 50w solar photovoltaic module, Materials Today: Proceedings. (2022).

DOI: 10.1016/j.matpr.2021.12.209

Google Scholar

[7] J. Yang, "Thermodynamic Principle for Waste," in From Zero Waste to Material Closed Loop: Springer, 2022, pp.9-12.

DOI: 10.1007/978-981-16-7683-3_3

Google Scholar

[8] K. M. Mishra and O. Singh. Solar preheat with significant Thermodynamics Parameter Scrutiny of Energetic, Economic and Environmental Analysis in Tri-generation System. Journal. Year; 2178(1): 012038.

DOI: 10.1088/1742-6596/2178/1/012038

Google Scholar

[9] W. Qu, J. Zhang, H. Hong, R. Jiang, K. Peng, R. Wang, H. Wu, and R. Yan, An approach of studying the full-spectrum conversion potential for solar photovoltaic and thermal processes, Energy Conversion Management. 253 (2022) 115194.

DOI: 10.1016/j.enconman.2021.115194

Google Scholar

[10] S. A. Kadhim and O. a. a.-M. Ibrahim, Improving the Thermal Efficiency of Flat Plate Solar Collector Using Nano-Fluids as a Working Fluids: A Review, Iraqi Journal of Industrial Research. 8 (2021) 49-60.

DOI: 10.53523/ijoirvol8i3id86

Google Scholar

[11] M. H. Yehia, M. A. Hassan, N. Abed, A. Khalil, and N. Bailek. Combined Thermal Performance Enhancement of Parabolic Trough Collectors Using Alumina Nanoparticles and Internal Fins. Journal. Year; 62107-132.

DOI: 10.4028/p-63cdb1

Google Scholar

[12] A. Hunt, Small Particle Heat Exchangers; Department of Energy, Lawrence Berkeley Laboratory, Energy Reports Environment Division: Berkeley, CA, USA. 7841 (1978).

Google Scholar

[13] F. J. Miller and R. W. Koenigsdorff, Thermal modeling of a small-particle solar central receiver, J. Sol. Energy Eng. 122 (2000) 23-29.

DOI: 10.1115/1.556277

Google Scholar

[14] B. Moshfegh and M. Sandberg, Flow and heat transfer in the air gap behind photovoltaic panels, J. Sol. Energy Eng. 2 (1998) 287-301.

DOI: 10.1016/s1364-0321(98)00005-7

Google Scholar

[15] S. Salawu, A. Obalalu, E. Fatunmbi, and R. Oderinu, Thermal Prandtl-Eyring hybridized MoS2-SiO2/C3H8O2 and SiO2-C3H8O2 nanofluids for effective solar energy absorber and entropy optimization: A solar water pump implementation, Journal of Molecular Liquids. 361 (2022) 119608.

DOI: 10.1016/j.mtcomm.2022.104763

Google Scholar

[16] S. Salawu, A. Obalalu, and M. Shamshuddin, Nonlinear Solar Thermal Radiation Efficiency and Energy Optimization for Magnetized Hybrid Prandtl–Eyring Nanoliquid in Aircraft, Arabian Journal for Science Engineering. (2022) 1-12.

DOI: 10.1007/s13369-022-07080-1

Google Scholar

[17] F. Shahzad, W. Jamshed, S. U. D. Sathyanarayanan, A. Aissa, P. Madheshwaran, and A. Mourad, Thermal analysis on Darcy‐Forchheimer swirling Casson hybrid nanofluid flow inside parallel plates in parabolic trough solar collector: An application to solar aircraft, International Journal of Energy Research. 45 (2021) 20812-20834.

DOI: 10.1002/er.7140

Google Scholar

[18] W. Jamshed, S. Uma Devi S, R. Safdar, F. Redouane, K. S. Nisar, and M. R. Eid, Comprehensive analysis on copper-iron (II, III)/oxide-engine oil Casson nanofluid flowing and thermal features in parabolic trough solar collector, Journal of Taibah University for Science. 15 (2021) 619-636.

DOI: 10.1080/16583655.2021.1996114

Google Scholar

[19] F. Wang, M. I. Asjad, M. Zahid, A. Iqbal, H. Ahmad, and M. Alsulami, Unsteady thermal transport flow of Casson nanofluids with generalized Mittag–Leffler kernel of Prabhakar's type, Journal of materials research technology. 14 (2021) 1292-1300.

DOI: 10.1016/j.jmrt.2021.07.029

Google Scholar

[20] S. M. Hussain, W. Jamshed, V. Kumar, V. Kumar, K. S. Nisar, M. R. Eid, R. Safdar, A.-H. Abdel-Aty, and I. Yahia, Computational analysis of thermal energy distribution of electromagnetic Casson nanofluid across stretched sheet: Shape factor effectiveness of solid-particles, Energy Reports. 7 (2021) 7460-7477.

DOI: 10.1016/j.egyr.2021.10.083

Google Scholar

[21] F. A. Wahaab, L. L. Adebayo, A. A. Adekoya, I. G. Hakeem, B. Alqasem, and A. M. Obalalu, Physiochemical properties and electromagnetic wave absorption performance of Ni0. 5Cu0. 5Fe2O4 nanoparticles at X-band frequency, Journal of Alloys and Compounds. 836 (2020) 155272.

DOI: 10.1016/j.jallcom.2020.155272

Google Scholar

[22] F.A. Wahaab, L. L. Adebayo, A. A. Adekoya, J. Y. Yusuf, A. M. Obalalu, A. O. Yusuff, and B. Alqasem, Electromagnetic wave-induced nanofluid-oil interfacial tension reduction for enhanced oil recovery, Journal of Molecular Liquids. 318 (2020) 114378.

DOI: 10.1016/j.molliq.2020.114378

Google Scholar

[23] O.A. Olayemi, K. Al‐Farhany, A.M. Obalalu, T.F. Ajide, and K.R. Adebayo, Magnetoconvection around an elliptic cylinder placed in a lid‐driven square enclosure subjected to internal heat generation or absorption, Heat Transfer. (2022).

DOI: 10.1002/htj.22530

Google Scholar

[24] R. B. Bird, G. Dai, and B. J. Yarusso, The rheology and flow of viscoplastic materials, Reviews in Chemical Engineering. 1 (1983) 1-70.

DOI: 10.1515/revce-1983-0102

Google Scholar

[25] M.R. Khan, A.S. Al-Johani, A.M. Elsiddieg, T. Saeed, and A.M. Abd Allah, The computational study of heat transfer and friction drag in an unsteady MHD radiated Casson fluid flow across a stretching/shrinking surface, International Communications in Heat Mass Transfer. 130 (2022) 105832.

DOI: 10.1016/j.icheatmasstransfer.2021.105832

Google Scholar

[26] R. Kodi and O. Mopuri, Unsteady MHD oscillatory Casson fluid flow past an inclined vertical porous plate in the presence of chemical reaction with heat absorption and Soret effects, Heat Transfer. 51 (2022) 733-752.

DOI: 10.1002/htj.22327

Google Scholar

[27] S.G. Bejawada, Y.D. Reddy, W. Jamshed, K.S. Nisar, A.N. Alharbi, and R. Chouikh, Radiation effect on MHD Casson fluid flow over an inclined non-linear surface with chemical reaction in a Forchheimer porous medium, Alexandria Engineering Journal. (2022).

DOI: 10.1016/j.aej.2022.01.043

Google Scholar

[28] A.M. Obalalu, F.A. Wahaab, and L.L. Adebayo, Heat transfer in an unsteady vertical porous channel with injection/suction in the presence of heat generation, Journal of Taibah University for Science. 14 (2020) 541-548.

DOI: 10.1080/16583655.2020.1748844

Google Scholar

[29] J. Gbadeyan, E. Titiloye, and A. Adeosun, Effect of variable thermal conductivity and viscosity on Casson nanofluid flow with convective heating and velocity slip, Heliyon. 6 (2020) e03076.

DOI: 10.1016/j.heliyon.2019.e03076

Google Scholar

[30] O.A. Olayemi, K. Al-Farhany, S.E. Ibitoye, and A.M. Obalalu. Mixed Convective Heat Transfer in a Lid-Driven Concentric Trapezoidal Enclosure: Numerical Simulation. Journal. Year; 6043-62.

DOI: 10.4028/p-kybe41

Google Scholar

[31] T. Ajayi, A. Omowaye, and I. L. Animasaun, Viscous dissipation effects on the motion of Casson fluid over an upper horizontal thermally stratified melting surface of a paraboloid of revolution: boundary layer analysis, Journal of Applied Mathematics. 2017 (2017).

DOI: 10.1155/2017/1697135

Google Scholar

[32] S. Manjunatha and B. Gireesha, Effects of variable viscosity and thermal conductivity on MHD flow and heat transfer of a dusty fluid, Ain Shams Engineering Journal. 7 (2016) 505-515.

DOI: 10.1016/j.asej.2015.01.006

Google Scholar

[33] N. Parveen and M. Alim, Effect of temperature-dependent variable viscosity on magnetohydrodynamic natural convection flow along a vertical wavy surface, International Scholarly Research Notices. 2011 (2011).

DOI: 10.5402/2011/505673

Google Scholar

[34] F. Bibi, T. Hayat, S. Farooq, A. Khan, and A. Alsaedi, Entropy generation analysis in peristaltic motion of Sisko material with variable viscosity and thermal conductivity, Journal of Thermal Analysis Calorimetry. 143 (2021) 363-375.

DOI: 10.1007/s10973-019-09125-4

Google Scholar

[35] M. Hassan, S. Ali, W. Aich, F. Khlissa, B. Ayadi, and L. Kolsi, Transport pattern of Non-Newtonian mass and thermal energy under two diverse flow conditions by using modified models for thermodynamics properties, Case Studies in Thermal Engineering. 29 (2022) 101714.

DOI: 10.1016/j.csite.2021.101714

Google Scholar

[36] A.M. Obalalu, Heat and mass transfer in an unsteady squeezed Casson fluid flow with novel thermophysical properties: Analytical and numerical solution, Heat Transfer. 50 (2021) 7988-8011.

DOI: 10.1002/htj.22263

Google Scholar

[37] H. T. Basha, R. Sivaraj, A. S. Reddy, A. J. Chamkha, and M. Tilioua, Impacts of temperature-dependent viscosity and variable Prandtl number on forced convective Falkner–Skan flow of Williamson nanofluid, SN Applied Sciences. 2 (2020) 1-14.

DOI: 10.1007/s42452-020-2216-3

Google Scholar

[38] S. Ahmad, R. D. Khan, and S. Zeb, Lie group analysis of hyperbolic tangent fluid flow in the presence of thermal radiation, Heat Transfer. 51 (2022) 3067-3081.

DOI: 10.1002/htj.22437

Google Scholar

[39] S. Noreen, M. Qasim, and Z. Khan, MHD pressure driven flow of nanofluid in curved channel, Journal of Magnetism Magnetic Materials. 393 (2015) 490-497.

DOI: 10.1016/j.jmmm.2015.05.038

Google Scholar

[40] M. G. Reddy and K. G. Kumar, Cattaneo-Christov heat flux feature on carbon nanotubes filled with micropolar liquid over a melting surface: a stream line study, International Communications in Heat Mass Transfer. 122 (2021) 105142.

DOI: 10.1016/j.icheatmasstransfer.2021.105142

Google Scholar

[41] S. Salawu, A. Obalalu, and S. Okoya, Thermal convection and solar radiation of electromagnetic actuator Cu–Al2O3/C3H8O2 and Cu–C3H8O2 hybrid nanofluids for solar collector optimization, Materials Today Communications. 33 (2022) 104763.

DOI: 10.1016/j.mtcomm.2022.104763

Google Scholar

[42] M. J. Uddin, W. A. Khan, and A. I. Ismail, MHD free convective boundary layer flow of a nanofluid past a flat vertical plate with Newtonian heating boundary condition, Plos one. 7 (2012) e49499.

DOI: 10.1371/journal.pone.0049499

Google Scholar

[43] A. Dawar, Z. Shah, S. Islam, W. Deebani, and M. Shutaywi, MHD stagnation point flow of a water-based copper nanofluid past a flat plate with solar radiation effect, Journal of Petroleum Science Engineering. 220 (2023) 111148.

DOI: 10.1016/j.petrol.2022.111148

Google Scholar