[1]
Z.Zhao, K.Zheng, X.Yu, L.Wang, S.Yao, Q.Qi, Effect of particles size of TiC on oxidation resistance of in-situ TiC/ Ni composite, j. Heliyon 9 (2023) e18220.
DOI: 10.1016/j.heliyon.2023.e18220
Google Scholar
[2]
A.L. Rominiyi, M.B. Shongwe, E.N. Ogunmuyiwa, B.J. Babalola, P.F. Lepele, P.A. Olubamb, Effect of nickel addition on densification, microstructure and wear behaviour of spark plasma sintered CP-titanium, Mater. Chem. Phys, 240 (2020)122130.
DOI: 10.1016/j.matchemphys.2019.122130
Google Scholar
[3]
A. Rajabi, M.J. Ghazali, J. Syarif, A.R. Daud, Development and application of tool wear: a review of the characterization of TiC-based cermets with different binders, Chem.Eng. J.255,(2014)445-452.
DOI: 10.1016/j.cej.2014.06.078
Google Scholar
[4]
A. G. de la Obra, M. J. Sayagués, E. Chicardi and F. J. Gotor, Development of Ti (C, N)-based cermets with (Co, FeNi)-based high entropy alloys as binder phase, J. Alloys Compd 814 (2020) 152218.
DOI: 10.1016/j.jallcom.2019.152218
Google Scholar
[5]
Q. Qi, Y. Liu, H. Zhang, J. Zhao, L .Gai, Y. Huang, Z. Huang, The formation mechanism of TiC particles in TiC/Ni composites fabricated by in situ reactive infiltration, J. Mater. Sci. 51 (2016)7038–7045.
DOI: 10.1007/s10853-016-9994-4
Google Scholar
[6]
Q. DONG, L. CHEN, M. ZHAO, J.BI, Analysis of in situ reaction and pressureless infiltration process in fabricating TiC Mg composites, J. Mater. Sci. Technol. 20 (2004) 3-7.
Google Scholar
[7]
W. Hu, Z. Huang, L. Cai, C.Lei, H. Zhai, S. Wo, X. Li, In-situ TiC and γ'-Ni3(Al, Ti) triggered microstructural modification and strengthening of Ni matrix composite by reactive hot-press sintering pure Ni and Ti2AlC precursor, J. Alloys Compd. 747 (2018) 1043-1052.
DOI: 10.1016/j.jallcom.2018.03.069
Google Scholar
[8]
W. Hu, Z. Huang, G. Zheng, Y. Wang, C.Lei, L. Cai, H. Zhai, Y.Zhou, Optimizing the microstructure and mechanical behaviors of in-situ TiC-γ'/Ni composites by subsequent thermal treatment, J. Alloys Compd. 774 (2019) 739-747.
DOI: 10.1016/j.jallcom.2018.10.053
Google Scholar
[9]
Z. Zhao, X.Yu, L. Wang, S. Yao, X. Song, Q. Qi, Effect of Ni on the formation mechanism of TiC/Ni composites fabricated by reactive sintering,IJRMHM,100 (2021) 105611.
DOI: 10.1016/j.ijrmhm.2021.105611
Google Scholar
[10]
N. Vasudevan, N.N.N. Ahamed, B.Pavithra, A.Aravindhan, BP. Shanmugave, Effect of Ni addition on the densification of TiC: a comparative study of conventional and microwave sintering, Int. J. Refract. Met. Hard Mater.87 (2020) 105165.
DOI: 10.1016/j.ijrmhm.2019.105165
Google Scholar
[11]
H. Kwon, C.-Y. Suh, Effects of Ni content and sintering temperature on the microstructure and mechanical properties of TiC-Ni composites fabricated by selective carburization of Ti-Ni alloys, J. Alloys Compd.834 (2020) 155000.
DOI: 10.1016/j.jallcom.2020.155000
Google Scholar
[12]
B.H. Lohse, A. Calka, D. Wexler, Synthesis of TiC by controlled ball milling of titanium and carbon, J. Mater. Sci. 42,2 (2006) 669–675.
DOI: 10.1007/s10853-006-0291-5
Google Scholar
[13]
X. Zhu, K. Zhao, B. Cheng, Q. Lin, X. Zhang, T. Chen, Y. Su, Synthesis of nanocrystalline TiC powder by mechanical alloying, Mater. Sci. Eng. C 16,1–2 (2001) 103–105.
DOI: 10.1016/s0928-4931(01)00283-1
Google Scholar
[14]
D.B. Miracle, H.A. Lipsitt, Mechanical properties of fine-grained substoichiomebic titanium carbide, J. Am. Ceram. Soc. 66,8 (1983) 592–597.
DOI: 10.1111/j.1151-2916.1983.tb10098.x
Google Scholar
[15]
W.S. Williams, R.D. Schaal, Elastic deformation, plastic flow, and dislocations in single crystals of titanium carbide, J. Appl. Phys. 33,3 (1962) 955–962.
DOI: 10.1063/1.1777197
Google Scholar
[16]
M.A. El Saeed, F.A. Deorsola, R.M. Rashad, Influence of SPS parameters on the density and mechanical properties of sintered Ti3SiC2 powders, Int. J. Refract. Met. Hard Mater.41 (2013) 48-53.
DOI: 10.1016/j.ijrmhm.2013.01.016
Google Scholar
[17]
M Shahedi Asl, S Ali Delbari, F Shayesteh, Z Ahmadi, Reactive spark plasma sintering of TiB2–SiC–TiN novel composite, Int. J. Refract. Met. Hard Mater. 81 (2019) 119–126.
DOI: 10.1016/j.ijrmhm.2019.02.022
Google Scholar
[18]
O. Popov, S. Chornobuk, V. Vishnyakov, Structure formation of TiB2-TiC-B4C-C hetero modulus ceramics via reaction hot pressing, Int. J. Refract. Met. Hard Mater. 64 (2017)106-112.
DOI: 10.1016/j.ijrmhm.2017.01.012
Google Scholar
[19]
L.Mibarki, M.Zidani, A.boukhobza, S.Mechachti and K.Fedaoui, Effect of the Proportion of Tungsten Element on the Mechanical and Structural Properties of (Fe3C-W-Ni) Sintered Alloy, Diffus. fundam. 18 (2018) 35-40.
DOI: 10.4028/www.scientific.net/df.18.35
Google Scholar
[20]
A. Boukhobza, K. Fedaoui, L. Mebarki, K. Arar and L. Baroura, Compaction and Heat Treatment Effects on the Structural and Mechanical Properties of Sintered Fe3C-W-Co Alloys, Int. J. Eng. Res. Africa. 52 (2021) 1-10.
DOI: 10.4028/www.scientific.net/jera.52.1
Google Scholar
[21]
Y.F. Yang, H.Y. Wang, R.Y. Zhao, Y.H. Liang, Q.C. Jiang, Effect of Ni content on the reaction behaviors of self-propagating high-temperature synthesis in the Ni-Ti-B4C system, Int. J. Refract. Met. Hard Mater. 26,2 (2008) 77–83.
DOI: 10.1016/j.ijrmhm.2007.03.001
Google Scholar
[22]
X. Cao, L. S. C. Wang, H. Yang, X.Xue, H. Li, Effect of Ni addition on pressureless sintering of tungsten diboride, Int. J. Refract. Met. Hard Mater. 41 (2013) 597–602.
DOI: 10.1016/j.ijrmhm.2013.07.013
Google Scholar
[23]
P. Angerer, L.G. Yu, K.A. Khor, G. Korb, I. Zalite, Spark-plasma-sintering (SPS) of nanostructured titanium carbonitride powders, J. Eur. Ceram. Soc. 25 ,11 (2005) 1919–1927.
DOI: 10.1016/j.jeurceramsoc.2004.06.008
Google Scholar
[24]
C.E. Holcombe, N.L. Dykes, Microwave sintering of titanium diboride, J. Mater. Sci. 26,14 (1991) 3730–3738.
DOI: 10.1007/bf01184963
Google Scholar
[25]
B. Meredith, D.R. Milner, The liquid–phase sintering of titanium carbide, Powder Metall. 19 ,3 (1976) 162–170.
DOI: 10.1179/pom.1976.19.3.162
Google Scholar
[26]
Z.G. Liu, J.T. Guo, L.L. Ye, G.S. Li, Z.Q. Hu, Formation mechanism of TiC by mechanical alloying, Appl. Phys. Lett. 65,21 (1994) 2666–2668.
DOI: 10.1063/1.112596
Google Scholar
[27]
N.Q. Wu, G.X. Wang, J.M. Wu, Z.Z. Li, M.Y. Yuan, Investigation of TiC formation during ball-milling of elemental titanium and carbon, Int. J. Refract. Met. Hard Mater. 15, 5–6 (1997) 289–293.
DOI: 10.1016/s0263-4368(97)87504-x
Google Scholar
[28]
S.D. Dunmead, Z.A. Munir, J.B. Holt, D.D. Kingman, Simultaneous synthesis and densification of TiC/Ni-Al composites, J. Mater. Sci. 26,9 (1991) 2410–2416.
DOI: 10.1007/bf01130188
Google Scholar
[29]
H. Boutefnouchet, C. Curfs, A. Triki, A. Boutefnouchet, D. Vrel, Self-propagating high-temperature synthesis mechanisms within the Ti–C–Ni system: a time resolved X-ray diffraction study, Powder Technol. 217 (2012) 443–450.
DOI: 10.1016/j.powtec.2011.10.061
Google Scholar
[30]
J. Wong, E.M. Larson, J.B. Holt, P.A. Waide, B. Rupp, R. Frahm, Time-resolved Xray diffraction study of solid combustion reactions, Science. 249,4975(1990)1406–1409.
DOI: 10.1126/science.249.4975.1406
Google Scholar
[31]
D. Leeb, Dynamic hardness testing of metallic materials, NDT Int. 12,6 (1979) 274–278. Haut du formulaire
DOI: 10.1016/0308-9126(79)90087-7
Google Scholar