Densification Behaviours of TiC/Ni Metal Ceramic Alloys Produced by Powder Metallurgy

Article Preview

Abstract:

Ceramic Metallic Alloys of TiC/Ni, Comprising Titanium Carbide with Nickel Contents of 5%, 15%, 30%, and 50%, were Fabricated through Solid-Phase Sintering at 1400°C with a 2-hour Holding Time and a Pressure of 50MPa. This Study Explores the Impact of Nickel Content on the Mechanical and Structural Properties. The Solidification Mechanism between TiC and Ni is Governed by Carbon Diffusion through TiC Particles, Affecting the Morphology of TiC and Carbon Particles in Ni Samples. The Reaction Behavior within the TiC/Ni Alloys was Analyzed, and Microstructural and Mechanical Characteristics were Examined to Evaluate the Influence of Varying Nickel Contents. Results indicate that in all samples, the TiC matrix exhibited a solid solution of the FCC phase. The reaction mechanism of Ti-C-Ni reveals the evolution of solid phase formation with increasing nickel content. As nickel content increases, the mass and size of nickel particles grow, leading to a more uniform and homogeneous structure. At a nickel content of 15%, the samples displayed a bending strength of 1200 ± 50 N, a microhardness of 800 ± 20 (HV 0.1), and a density of 5.6 ± 0.2.

You might also be interested in these eBooks

Info:

Pages:

1-10

Citation:

Online since:

April 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z.Zhao, K.Zheng, X.Yu, L.Wang, S.Yao, Q.Qi, Effect of particles size of TiC on oxidation resistance of in-situ TiC/ Ni composite, j. Heliyon 9 (2023) e18220.

DOI: 10.1016/j.heliyon.2023.e18220

Google Scholar

[2] A.L. Rominiyi, M.B. Shongwe, E.N. Ogunmuyiwa, B.J. Babalola, P.F. Lepele, P.A. Olubamb, Effect of nickel addition on densification, microstructure and wear behaviour of spark plasma sintered CP-titanium, Mater. Chem. Phys, 240 (2020)122130.

DOI: 10.1016/j.matchemphys.2019.122130

Google Scholar

[3] A. Rajabi, M.J. Ghazali, J. Syarif, A.R. Daud, Development and application of tool wear: a review of the characterization of TiC-based cermets with different binders, Chem.Eng. J.255,(2014)445-452.

DOI: 10.1016/j.cej.2014.06.078

Google Scholar

[4] A. G. de la Obra, M. J. Sayagués, E. Chicardi and F. J. Gotor, Development of Ti (C, N)-based cermets with (Co, FeNi)-based high entropy alloys as binder phase, J. Alloys Compd 814 (2020) 152218.

DOI: 10.1016/j.jallcom.2019.152218

Google Scholar

[5] Q. Qi, Y. Liu, H. Zhang, J. Zhao, L .Gai, Y. Huang, Z. Huang, The formation mechanism of TiC particles in TiC/Ni composites fabricated by in situ reactive infiltration, J. Mater. Sci. 51 (2016)7038–7045.

DOI: 10.1007/s10853-016-9994-4

Google Scholar

[6] Q. DONG, L. CHEN, M. ZHAO, J.BI, Analysis of in situ reaction and pressureless infiltration process in fabricating TiC Mg composites, J. Mater. Sci. Technol. 20 (2004) 3-7.

Google Scholar

[7] W. Hu, Z. Huang, L. Cai, C.Lei, H. Zhai, S. Wo, X. Li, In-situ TiC and γ'-Ni3(Al, Ti) triggered microstructural modification and strengthening of Ni matrix composite by reactive hot-press sintering pure Ni and Ti2AlC precursor, J. Alloys Compd. 747 (2018) 1043-1052.

DOI: 10.1016/j.jallcom.2018.03.069

Google Scholar

[8] W. Hu, Z. Huang, G. Zheng, Y. Wang, C.Lei, L. Cai, H. Zhai, Y.Zhou, Optimizing the microstructure and mechanical behaviors of in-situ TiC-γ'/Ni composites by subsequent thermal treatment, J. Alloys Compd. 774 (2019) 739-747.

DOI: 10.1016/j.jallcom.2018.10.053

Google Scholar

[9] Z. Zhao, X.Yu, L. Wang, S. Yao, X. Song, Q. Qi, Effect of Ni on the formation mechanism of TiC/Ni composites fabricated by reactive sintering,IJRMHM,100 (2021) 105611.

DOI: 10.1016/j.ijrmhm.2021.105611

Google Scholar

[10] N. Vasudevan, N.N.N. Ahamed, B.Pavithra, A.Aravindhan, BP. Shanmugave, Effect of Ni addition on the densification of TiC: a comparative study of conventional and microwave sintering, Int. J. Refract. Met. Hard Mater.87 (2020) 105165.

DOI: 10.1016/j.ijrmhm.2019.105165

Google Scholar

[11] H. Kwon, C.-Y. Suh, Effects of Ni content and sintering temperature on the microstructure and mechanical properties of TiC-Ni composites fabricated by selective carburization of Ti-Ni alloys, J. Alloys Compd.834 (2020) 155000.

DOI: 10.1016/j.jallcom.2020.155000

Google Scholar

[12] B.H. Lohse, A. Calka, D. Wexler, Synthesis of TiC by controlled ball milling of titanium and carbon, J. Mater. Sci. 42,2 (2006) 669–675.

DOI: 10.1007/s10853-006-0291-5

Google Scholar

[13] X. Zhu, K. Zhao, B. Cheng, Q. Lin, X. Zhang, T. Chen, Y. Su, Synthesis of nanocrystalline TiC powder by mechanical alloying, Mater. Sci. Eng. C 16,1–2 (2001) 103–105.

DOI: 10.1016/s0928-4931(01)00283-1

Google Scholar

[14] D.B. Miracle, H.A. Lipsitt, Mechanical properties of fine-grained substoichiomebic titanium carbide, J. Am. Ceram. Soc. 66,8 (1983) 592–597.

DOI: 10.1111/j.1151-2916.1983.tb10098.x

Google Scholar

[15] W.S. Williams, R.D. Schaal, Elastic deformation, plastic flow, and dislocations in single crystals of titanium carbide, J. Appl. Phys. 33,3 (1962) 955–962.

DOI: 10.1063/1.1777197

Google Scholar

[16] M.A. El Saeed, F.A. Deorsola, R.M. Rashad, Influence of SPS parameters on the density and mechanical properties of sintered Ti3SiC2 powders, Int. J. Refract. Met. Hard Mater.41 (2013) 48-53.

DOI: 10.1016/j.ijrmhm.2013.01.016

Google Scholar

[17] M Shahedi Asl, S Ali Delbari, F Shayesteh, Z Ahmadi, Reactive spark plasma sintering of TiB2–SiC–TiN novel composite, Int. J. Refract. Met. Hard Mater. 81 (2019) 119–126.

DOI: 10.1016/j.ijrmhm.2019.02.022

Google Scholar

[18] O. Popov, S. Chornobuk, V. Vishnyakov, Structure formation of TiB2-TiC-B4C-C hetero modulus ceramics via reaction hot pressing, Int. J. Refract. Met. Hard Mater. 64 (2017)106-112.

DOI: 10.1016/j.ijrmhm.2017.01.012

Google Scholar

[19] L.Mibarki, M.Zidani, A.boukhobza, S.Mechachti and K.Fedaoui, Effect of the Proportion of Tungsten Element on the Mechanical and Structural Properties of (Fe3C-W-Ni) Sintered Alloy, Diffus. fundam. 18 (2018) 35-40.

DOI: 10.4028/www.scientific.net/df.18.35

Google Scholar

[20] A. Boukhobza, K. Fedaoui, L. Mebarki, K. Arar and L. Baroura, Compaction and Heat Treatment Effects on the Structural and Mechanical Properties of Sintered Fe3C-W-Co Alloys, Int. J. Eng. Res. Africa. 52 (2021) 1-10.

DOI: 10.4028/www.scientific.net/jera.52.1

Google Scholar

[21] Y.F. Yang, H.Y. Wang, R.Y. Zhao, Y.H. Liang, Q.C. Jiang, Effect of Ni content on the reaction behaviors of self-propagating high-temperature synthesis in the Ni-Ti-B4C system, Int. J. Refract. Met. Hard Mater. 26,2 (2008) 77–83.

DOI: 10.1016/j.ijrmhm.2007.03.001

Google Scholar

[22] X. Cao, L. S. C. Wang, H. Yang, X.Xue, H. Li, Effect of Ni addition on pressureless sintering of tungsten diboride, Int. J. Refract. Met. Hard Mater. 41 (2013) 597–602.

DOI: 10.1016/j.ijrmhm.2013.07.013

Google Scholar

[23] P. Angerer, L.G. Yu, K.A. Khor, G. Korb, I. Zalite, Spark-plasma-sintering (SPS) of nanostructured titanium carbonitride powders, J. Eur. Ceram. Soc. 25 ,11 (2005) 1919–1927.

DOI: 10.1016/j.jeurceramsoc.2004.06.008

Google Scholar

[24] C.E. Holcombe, N.L. Dykes, Microwave sintering of titanium diboride, J. Mater. Sci. 26,14 (1991) 3730–3738.

DOI: 10.1007/bf01184963

Google Scholar

[25] B. Meredith, D.R. Milner, The liquid–phase sintering of titanium carbide, Powder Metall. 19 ,3 (1976) 162–170.

DOI: 10.1179/pom.1976.19.3.162

Google Scholar

[26] Z.G. Liu, J.T. Guo, L.L. Ye, G.S. Li, Z.Q. Hu, Formation mechanism of TiC by mechanical alloying, Appl. Phys. Lett. 65,21 (1994) 2666–2668.

DOI: 10.1063/1.112596

Google Scholar

[27] N.Q. Wu, G.X. Wang, J.M. Wu, Z.Z. Li, M.Y. Yuan, Investigation of TiC formation during ball-milling of elemental titanium and carbon, Int. J. Refract. Met. Hard Mater. 15, 5–6 (1997) 289–293.

DOI: 10.1016/s0263-4368(97)87504-x

Google Scholar

[28] S.D. Dunmead, Z.A. Munir, J.B. Holt, D.D. Kingman, Simultaneous synthesis and densification of TiC/Ni-Al composites, J. Mater. Sci. 26,9 (1991) 2410–2416.

DOI: 10.1007/bf01130188

Google Scholar

[29] H. Boutefnouchet, C. Curfs, A. Triki, A. Boutefnouchet, D. Vrel, Self-propagating high-temperature synthesis mechanisms within the Ti–C–Ni system: a time resolved X-ray diffraction study, Powder Technol. 217 (2012) 443–450.

DOI: 10.1016/j.powtec.2011.10.061

Google Scholar

[30] J. Wong, E.M. Larson, J.B. Holt, P.A. Waide, B. Rupp, R. Frahm, Time-resolved Xray diffraction study of solid combustion reactions, Science. 249,4975(1990)1406–1409.

DOI: 10.1126/science.249.4975.1406

Google Scholar

[31] D. Leeb, Dynamic hardness testing of metallic materials, NDT Int. 12,6 (1979) 274–278. Haut du formulaire

DOI: 10.1016/0308-9126(79)90087-7

Google Scholar