[1]
S. Kaza, L. Yao, P. Bhada-Tata, F. Van Woerden, What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050, The World Bank, 2018.
DOI: 10.1596/978-1-4648-1329-0
Google Scholar
[2]
K. Pilakoutas, K. Neocleous, H. Tlemat, Reuse of tyre steel fibres as concrete reinforcement, Proc. ICE-Eng. Sustain. 157 (2004) 131–138.
DOI: 10.1680/ensu.2004.157.3.131
Google Scholar
[3]
H. Hu, P. Papastergiou, H. Angelakopoulos, M. Guadagnini, K. Pilakoutas, Mechanical properties of SFRC using blended manufactured and recycled tyre steel fibres, Constr. Build. Mater. 163 (2018) 376–389.
DOI: 10.1016/j.conbuildmat.2017.12.116
Google Scholar
[4]
H. Hu, P. Papastergiou, H. Angelakopoulos, M. Guadagnini, K. Pilakoutas, Mechanical properties of SFRC using blended Recycled Tyre Steel Cords (RTSC) and Recycled Tyre Steel Fibres (RTSF), Constr. Build. Mater. 187 (2018) 553–564.
DOI: 10.1016/j.conbuildmat.2018.07.206
Google Scholar
[5]
D. Shekhara, J. Godihalb, Sustainable approaches in the built environment with industrial waste and recycled products derived from construction and demolition waste, Res. Eng. Struct. Mater. 9 (2023) 1117-1133.
DOI: 10.17515/resm2023.685ma0207
Google Scholar
[6]
H. Choi, Compressive behavior of recycled aggregate concrete short columns with lateral reinforcements, Jordan J. Civ. Eng. 11 (2017) 253-266.
Google Scholar
[7]
M. Etxeberria, E. Vázquez, A. Marí, M. Barra, Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete, Cem. Concr. Res. 37 (2007) 735–742.
DOI: 10.1016/j.cemconres.2007.02.002
Google Scholar
[8]
S.M.S. Kazmi, M.J. Munir, Y.-F. Wu, I. Patnaikuni, Y. Zhou, F. Xing, Influence of different treatment methods on the mechanical behavior of recycled aggregate concrete: A comparative study, Cem. Concr. Compos. 104 (2019) 103398.
DOI: 10.1016/j.cemconcomp.2019.103398
Google Scholar
[9]
S.M.S. Kazmi, M.J. Munir, Y.-F. Wu, Recycled aggregate concrete: mechanical and durability performance, in: F. Colangelo, R. Cioffi, I. Farina (Eds.), Handbook of Sustainable Concrete and Industrial Waste Management, Woodhead Publishing, England, 2022, pp.211-227.
DOI: 10.1016/b978-0-12-821730-6.00017-6
Google Scholar
[10]
Z.J. Grdic, G.A. Toplicic-Curcic, I.M. Despotovic, N.S. Ristic, Properties of self-compacting concrete prepared with coarse recycled concrete aggregate, Constr. Build. Mater. 24 (2010) 1129–1133.
DOI: 10.1016/j.conbuildmat.2009.12.029
Google Scholar
[11]
D. Carro-López, B. González-Fonteboa, J. de Brito, F. Martínez-Abella, I. González-Taboada, P. Silva, Study of the rheology of self-compacting concrete with fine recycled concrete aggregates, Constr. Build. Mater. 96 (2015) 491–501.
DOI: 10.1016/j.conbuildmat.2015.08.091
Google Scholar
[12]
D. Carro-López, B. González-Fonteboa, F. Martínez-Abella, I. González-Taboada, J. de Brito, F. Varela-Puga, Proportioning, Microstructure and Fresh Properties of Self-compacting Concrete with Recycled Sand, Procedia Eng. 171 (2017) 645–657.
DOI: 10.1016/j.proeng.2017.01.401
Google Scholar
[13]
S.C. Kou, C.S. Poon, Properties of self-compacting concrete prepared with coarse and fine recycled concrete aggregates, Cem. Concr. Compos. 31 (2009) 622–627.
DOI: 10.1016/j.cemconcomp.2009.06.005
Google Scholar
[14]
V. Revilla-Cuesta, M. Skaf, F. Faleschini, J.M. Manso, V. Ortega-López, Self-compacting concrete manufactured with recycled concrete aggregate: An overview, J. Clean. Prod. 262 (2020) 121362.
DOI: 10.1016/j.jclepro.2020.121362
Google Scholar
[15]
K.C. Panda, P.K. Bal, Properties of Self Compacting Concrete Using Recycled Coarse Aggregate, Procedia Eng. 51 (2013) 159–164.
DOI: 10.1016/j.proeng.2013.01.023
Google Scholar
[16]
L.A. Pereira-de Oliveira, M. Nepomuceno, M. Rangel, An eco-friendly self-compacting concrete with recycled coarse aggregates, Inf. Construccion. 65 (2013) 31–41.
DOI: 10.3989/ic.11.138
Google Scholar
[17]
F. Fiol, C. Thomas, C. Muñoz, V. Ortega-López, J.M. Manso, The influence of recycled aggregates from precast elements on the mechanical properties of structural self-compacting concrete, Constr. Build. Mater. 182 (2018) 309–323.
DOI: 10.1016/j.conbuildmat.2018.06.132
Google Scholar
[18]
S. Manzi, C. Mazzotti, M.C. Bignozzi, Short and long-term behavior of structural concrete with recycled concrete aggregate, Cem. Concr. Compos. 37 (2013) 312–318.
DOI: 10.1016/j.cemconcomp.2013.01.003
Google Scholar
[19]
S. Manzi, C. Mazzotti, M. Chiara Bignozzi, Self-compacting concrete with recycled concrete aggregate: Study of the long-term properties, Constr. Build. Mater. 157 (2017) 582–590.
DOI: 10.1016/j.conbuildmat.2017.10.060
Google Scholar
[20]
E. Mohseni, R. Saadati, N. Kordbacheh, Z.S. Parpinchi, W. Tang, Engineering and microstructural assessment of fibre-reinforced self-compacting concrete containing recycled coarse aggregate, J. Clean. Prod. 168 (2017) 605–613.
DOI: 10.1016/j.jclepro.2017.09.070
Google Scholar
[21]
L. Ferrara, Y.-D. Park, S.P. Shah, A method for mix-design of fiber-reinforced self-compacting concrete, Cem. Concr. Res. 37 (2007) 957–971.
DOI: 10.1016/j.cemconres.2007.03.014
Google Scholar
[22]
B.S. EN 197-1, Cement-Part 1: Composition, specifications and conformity criteria for common cements, British Standards Institution, London, 2000.
Google Scholar
[23]
ASTM C 127, Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate, ASTM, West Conshohocken, 2015.
DOI: 10.1520/c0127-01
Google Scholar
[24]
S. EFNARC, Guidelines for Self-Compacting Concrete, European Federation for Specialist Construction Chemicals and Concrete Systems, Norfolk, 2002.
Google Scholar
[25]
EN 12350-8, Testing Fresh Concrete - Part 8: Self-Compacting Concrete - Slump-Flow Test, European Committee for Standardization, Brussels, 2019.
DOI: 10.3403/30210219u
Google Scholar
[26]
EN 12350-10, Testing Fresh Concrete - Part 10: Self-Compacting Concrete - L Box Test, European Committee for Standardization, Brussels, 2010.
Google Scholar
[27]
EN 12350-11, Testing Fresh Concrete - Part 11: Self-Compacting Concrete - Sieve Segregation Test, European Committee for Standardization, Brussels, 2010.
DOI: 10.3403/30210228
Google Scholar
[28]
EN 12390-3, Testing Hardened Concrete - Part 3: Compressive Strength of Test Specimens, European Committee for Standardization, Brussels, 2019.
Google Scholar
[29]
ASTM C 78, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading), ASTM, West Conshohocken, 2002.
DOI: 10.1520/c0078_c0078m-15a
Google Scholar
[30]
NF EN 206-9, Béton – Partie 9: Règles complémentaires pour le béton autoplaçant, AFNOR, Saint-Denis, 2010.
Google Scholar
[31]
J. Ahmad, Z. Zhou, Mechanical performance of waste marble based self compacting concrete reinforced with steel fiber (Part Ⅰ), J. Build. Eng. 78 (2023) 107574.
DOI: 10.1016/j.jobe.2023.107574
Google Scholar
[32]
N.E. Maameri, H. Bensaci, S. Kenai, The effect of treated recycled steel fibers and slag on the properties of recycled self-compacting concrete, MRS Adv. 8 (2023) 613–617.
DOI: 10.1557/s43580-023-00616-z
Google Scholar
[33]
T. Uygunoğlu, İ.B. Topçu, A.G. Çelik, Use of waste marble and recycled aggregates in self-compacting concrete for environmental sustainability, J. Clean. Prod. 84 (2014) 691–700.
DOI: 10.1016/j.jclepro.2014.06.019
Google Scholar
[34]
H. Quan, H. Kasami, Experimental Study on the Effects of Recycled Concrete Powder on Properties of Self-Compacting Concrete, Open Civ. Eng. J. 12 (2018) 430–440.
DOI: 10.2174/1874149501812010430
Google Scholar
[35]
Kenai, S., Menadi, B., Debbih, A., & Kadri, E. H., Effect of Recycled Concrete Aggregates and Natural Pozzolana on Rheology of Self-Compacting Concrete, Key Eng. Mater. 600 (2014) 256–263.
DOI: 10.4028/www.scientific.net/kem.600.256
Google Scholar
[36]
N. Nalanth, P.V. Venkatesan, M.S. Ravikumar, Evaluation of the Fresh and Hardened Properties of Steel Fibre Reinforced Self-Compacting Concrete Using Recycled Aggregates as a Replacement Material, Adv. Civ. Eng. 2014 (2014) e671547.
DOI: 10.1155/2014/671547
Google Scholar
[37]
J.A. Ortiz, A. de la Fuente, F. Mena Sebastia, I. Segura, A. Aguado, Steel-fibre-reinforced self-compacting concrete with 100% recycled mixed aggregates suitable for structural applications, Constr. Build. Mater. 156 (2017) 230–241.
DOI: 10.1016/j.conbuildmat.2017.08.188
Google Scholar
[38]
M. Mastali, A. Dalvand, A.R. Sattarifard, Z. Abdollahnejad, M. Illikainen, Characterization and optimization of hardened properties of self-consolidating concrete incorporating recycled steel, industrial steel, polypropylene and hybrid fibers, Compos. Part B Eng. 151 (2018) 186–200.
DOI: 10.1016/j.compositesb.2018.06.021
Google Scholar
[39]
L.A. Pereira-de-Oliveira, M.C.S. Nepomuceno, J.P. Castro-Gomes, M.F.C. Vila, Permeability properties of self-compacting concrete with coarse recycled aggregates, Constr. Build. Mater. 51 (2014) 113–120.
DOI: 10.1016/j.conbuildmat.2013.10.061
Google Scholar
[40]
S. Santos, P.R. da Silva, J. de Brito, Self-compacting concrete with recycled aggregates – A literature review, J. Build. Eng. 22 (2019) 349–371.
DOI: 10.1016/j.jobe.2019.01.001
Google Scholar
[41]
H. Quan, H. Kasami, Experimental Study on the Effects of Recycled Concrete Powder on Properties of Self-Compacting Concrete, Open Civ. Eng. J. 12 (2018) 430-440.
DOI: 10.2174/1874149501812010430
Google Scholar
[42]
S. Boudali, D.E. Kerdal, K. Ayed, B. Abdulsalam, A.M. Soliman, Performance of self-compacting concrete incorporating recycled concrete fines and aggregate exposed to sulphate attack, Constr. Build. Mater. 124 (2016) 705–713.
DOI: 10.1016/j.conbuildmat.2016.06.058
Google Scholar
[43]
R. Siddique, G. Kaur, Kunal, Strength and permeation properties of self-compacting concrete containing fly ash and hooked steel fibres, Constr. Build. Mater. 103 (2016) 15–22.
DOI: 10.1016/j.conbuildmat.2015.11.044
Google Scholar