[1]
L. Hammadi, A. Ponton, Rheological investigation of vase of dam: Effects of aging time, shear rate, and temperature, Applied Rheology 27 (2017) 21.
Google Scholar
[2]
P. O. Ayegba, L.C. Edomwonyi‐Out, N. Yusuf , A. Abubakar , A review of drag reduction by additives in curved pipes for single‐phase liquid and two‐phase flows, Engineering Reports . 3(2011) 12294.
DOI: 10.20944/preprints202001.0031.v1
Google Scholar
[3]
Y. Ozmen , B.J. Boersma B. J, An experimental study on friction reducing polymers in turbulent pipe flow, Ocean Engineering. 274 (2003) 114039.
DOI: 10.1016/j.oceaneng.2023.114039
Google Scholar
[4]
M. Eshrati, T. Al-Wahaibi , A.R. Al-Hashmi , Y. Al-Wahaibi , A. Al-Ajmi, A. Abubakar, Significance of polymer elasticity on drag reduction performance in dispersed oil-in-water pipe flow. Chemical Engineering, Research and Design. 182 (2022) 571.
DOI: 10.1016/j.cherd.2022.04.020
Google Scholar
[5]
M.A. Asidin, E. , T. Jusnukin , F.A. Lahin , Review on the applications and developments of drag reducing polymer in turbulent pipe flow, Chinese Journal of Chemical Engineering. 27(2019) 1921.
DOI: 10.1016/j.cjche.2019.03.003
Google Scholar
[6]
B. Raei, The effect of polymeric drag reducing agent on pressure drop reduction in circular pipes: Experimental and statistical investigation, Journal of the Indian Chemical Society . 100(2023) 100905.
DOI: 10.1016/j.jics.2023.100905
Google Scholar
[7]
P. Treegosol, J. Priyadumkol, W. Kamutavanich, K. Katchasuwanmanee, W.Chaiworapuek, Experimental investigation of the heat transfer and friction loss of turbulent flow in circular pipe under low-frequency ultrasound propagation along the mainstream flow, Ultrasonics. 128 (2023) 106866.
DOI: 10.1016/j.ultras.2022.106866
Google Scholar
[8]
A. Utomo, A. Riadi, Drag reduction using additives in smooth circular pipes based on experimental approach, Processes. 9(2021) 1596.
DOI: 10.3390/pr9091596
Google Scholar
[9]
H.A. Abdulbari, Mohd Yunus , K. Letchmanan, Drag Reduction Characteristics Using Aloe Vera Natural Mucilage: An Experimental Study, Journal of Applied Sciences. 11(2011) 1039.
DOI: 10.3923/jas.2011.1039.1043
Google Scholar
[10]
A.I. Dosumu, L.C. Edomwonyi-Out, A. Abubakar, Y. Nurudeen, Effectiveness of Natural Gums as Drag Reducing Agent in Oil-Water Flows, Nigerian Journal of Materials Science and Engineering (NJMSE). 8(2018)44 .
Google Scholar
[11]
M.N. Abdallah, L.C. Edomwonyi-, A. Yusuf N, Baba , Aloe Vera mucilage as drag reducing agent in oil-water flow. Arid Zone Journal of Engineering, Technology and Environment. 15(2019) 248.
Google Scholar
[12]
Q. Quan , S. Wang , L. Wang ,Y. Shi, J. Xie , X. Wang , S. Wang , Experimental study on the effect of high-molecular polymer as drag reducer on drag reduction rate of pipe flow, Journal of Petroleum Science and Engineering. 178(2019) 852.
DOI: 10.1016/j.petrol.2019.04.013
Google Scholar
[13]
M.M. Gimba, L.C. Edomwonyi-Out , N. Yusuf, A. Abubakar , Drag reduction with polymer mixtures in pipes of different diameters. Arid Zone, Journal of Engineering, Technology and Environment. 15(2019) 792.
Google Scholar
[14]
L.C. Edomwonyi-Out, A.I. Dosumu, N. Yusuf,) Effect of oil on the performance of biopolymers as drag reducers in fresh water flow, Heliyon. 7(2021) 06535.
DOI: 10.1016/j.heliyon.2021.e06535
Google Scholar
[15]
X. Zhang, X. Duan, Y. Muzychka, Degradation of flow drag reduction with polymer additives—A new molecular view, Journal of Molecular Liquids. 292(2019) 111360
DOI: 10.1016/j.molliq.2019.111360
Google Scholar
[16]
T.I. Józsa, E. Balaras, M. Kashtalyan, A.G.L. Borthwick, I.M. Viola, On the friction drag reduction mechanism of streamwise wall fluctuations, International Journal of Heat and Fluid Flow. 86 (2020) 108686.
DOI: 10.1016/j.ijheatfluidflow.2020.108686
Google Scholar
[17]
T. Tanaka, Y. Oishi, H.J. Park, Y. Tasaka , Y. Murai, C. Kawakita) Frictional drag reduction caused by bubble injection in a turbulent boundary layer beneath a 36-m-long flat-bottom model ship, Ocean Engineering. 252(2022) 111224.
DOI: 10.1016/j.oceaneng.2022.111224
Google Scholar
[18]
D. Kulmatova, F. Hadri , S. Guillou, D. Bonn , Turbulent viscosity profile of drag reducing rod-like polymers, The European Physical Journal. E 41 (2018) 1
DOI: 10.1140/epje/i2018-11751-3
Google Scholar
[19]
M.A. Asidin, E. Suali, T. Jusnukin , F.A. Lahin, Observation on the drag reducing effect of low concentration chitosan solution in turbulent pipe flow, In IOP Conference Series: Materials Science and Engineering. 606 (2019) 012008).
DOI: 10.1088/1757-899x/606/1/012008
Google Scholar
[20]
J.H. Burger, R. Haldenwang , R.P. Chhabra, N.J Alderman, Power law and composite power law friction factor correlations for laminar and turbulent non-Newtonian open channel flow, Journal of the Brazilian Society of Mechanical Sciences and Engineering. 37 (2015) 601-612.
DOI: 10.1007/s40430-014-0188-1
Google Scholar
[21]
C. Bergane, L. Hammadi, Impact of organophilic clay on rheological properties of gasoil-based drilling muds, Journal of Petroleum Exploration and Production Technology. 10 (2020) 3533-3540.
DOI: 10.1007/s13202-020-01008-x
Google Scholar
[22]
F.A. Rayhan, R. Rizal, Pressure drop and non-Newtonian behavior of ice slurry in a horizontal pipe, Journal of the Brazilian Society of Mechanical Sciences and Engineering. 44(2022) 200.
DOI: 10.1007/s40430-022-03503-0
Google Scholar
[23]
V.V. Matabura, L.M. Rweyemamu , Effects of Xanthan gum on rheological properties of Aloe Vera-Moringa leaf juice blends, Tanzania Journal of Science. 47( 2021) 583-596.
DOI: 10.4314/tjs.v47i2.14
Google Scholar
[24]
N.R. Swami Hulle, K. Patruni, P.S. Rao, Rheological Properties of Aloe Vera (Aloe barbadensis Miller) Juice Concentrates, Journal of Food Process Engineering. 37(2014)375-386.
DOI: 10.1111/jfpe.12093
Google Scholar
[25]
F. Saad, A.L. Mohamed , M. Mosaad , H.A. Othman, A.G. Hassabo , Enhancing the rheological properties of aloe vera polysaccharide gel for use as an eco-friendly thickening agent in textile printing paste, Carbohydrate Polymer Technologies and Applications. 2(2021) 100132.
DOI: 10.1016/j.carpta.2021.100132
Google Scholar
[26]
T. Shende, V.J. Niasar, M. Babaei , Effective viscosity and Reynolds number of non-Newtonian fluids using Meter model. Rheologica Acta , 60 (2021) 11-21.
DOI: 10.1007/s00397-020-01248-y
Google Scholar
[27]
M. Danish, S. Kumar, Approximate explicit analytical expressions of friction factor for flow of Bingham fluids in smooth pipes using Adomian decomposition method, Communications in Nonlinear Science and Numerical Simulation. 16 (2011) 239-251.
DOI: 10.1016/j.cnsns.2010.03.013
Google Scholar
[28]
P.K. Swamee, N. Aggarwal, Explicit equations for laminar flow of Bingham plastic fluids, Journal of Petroleum Science and Engineerin. 76 (2011) 178-184.
DOI: 10.1016/j.petrol.2011.01.015
Google Scholar
[29]
S.Nash, D.A.S. Rees The effect of microstructure on models for the flow of a Bingham fluid in porous media: one-dimensional flows, Transport in Porous Media. 116 (2017) 1073-1092.
DOI: 10.1007/s11242-016-0813-9
Google Scholar
[30]
M.I. Pinzon, O.R. Garcia, C.C. Villa, The influence of Aloe vera gel incorporation on the physicochemical and mechanical properties of banana starch‐chitosan edible films. Journal of the Science of Food and Agriculture, 98(2018), 4042-4049.
DOI: 10.1002/jsfa.8915
Google Scholar
[31]
B. Bharathan, M. McGuinness, S. Kuhar, M. Kermani, F.P. Hassani, A.P. Sasmito , Pressure loss and friction factor in non-Newtonian mine paste backfill: modelling, loop test and mine field data, Powder technology. 344 (2019) 443-453.
DOI: 10.1016/j.powtec.2018.12.029
Google Scholar
[32]
P. Kiran, P.S. Rao , Rheological and structural characterization of prepared aqueous Aloe vera dispersions, Food research international. 62(2014)1029-1037.
DOI: 10.1016/j.foodres.2014.05.033
Google Scholar
[33]
E.J. Soares, R.N. Siqueira, L.M. Leal, K.C. Barbosa, D.F. Cipriano, J.C. Freitas , ) The role played by the aging of aloe vera on its drag reduction properties in turbulent flows, Journal of Non-Newtonian Fluid Mechanics. 265 (2019) 1-10.
DOI: 10.1016/j.jnnfm.2018.12.010
Google Scholar
[34]
S. Baheri Islami, M. Khezerloo, R. Gharraei, The effect of chaotic advection on mixing degree and pressure drop of non-Newtonian fluids flow in curved micromixers, Journal of the Brazilian Society of Mechanical Sciences and Engineering. 39 (2017) 813-831.
DOI: 10.1007/s40430-016-0689-1
Google Scholar
[35]
B. Lakhache, L. Hammadi, L. Gaidi, Impact of Sodium Tripolyphosphate on the Rheological Properties of Dams Sediments and Friction Factor during Hydraulic Dredging of Dams. Advanced Materials Research. 1177 (2023) 111-120.
DOI: 10.4028/p-5r18f6
Google Scholar
[36]
E. J. Soares, R. N. Siqueira, L.M. Leal, K.C. Barbosa, D.F. Cipriano, J.C. Freitas, The role played by the aging of aloe vera on its drag reduction properties in turbulent flows. Journal of Non-Newtonian Fluid Mechanics. 265(2019) 1-10.
DOI: 10.1016/j.jnnfm.2018.12.010
Google Scholar
[37]
M.Bagum, J.M. Ahammad, T. Husain, M.E Hossain, An experimental study to develop an environmental friendly mud additive of drilling fluid using Aloe Vera. Journal of Petroleum Science and Engineering.211(2022) 110135.
DOI: 10.1016/j.petrol.2022.110135
Google Scholar
[38]
R.Tariq, Z. Khurshid, W.A Farooqui, N. Adanir, Anti-bacterial efficacy of Aloe vera against E. faecalis as compared to other intracanal medicaments: A systematic review and meta-analysis. The Saudi Dental Journal. (2023)
DOI: 10.1016/j.sdentj.2023.05.007
Google Scholar
[39]
M. González-Delgado, R. Minjares-Fuentes, M. Mota-Ituarte, A. Pedroza-Sandoval, F. Comas-Serra, J.J. Quezada-Rivera, A. Femenia, Joint water and salinity stresses increase the bioactive compounds of Aloe vera (Aloe barbadensis Miller) gel enhancing its related functional properties. Agricultural Water Management, 285 (2023) 108374.
DOI: 10.1016/j.agwat.2023.108374
Google Scholar
[40]
J. Yang, EMergy accounting for the Three Gorges Dam project: three scenarios for the estimation of non-renewable sediment cost. Journal of Cleaner Production, 112 (216) 3000-3006.
DOI: 10.1016/j.jclepro.2015.10.110
Google Scholar
[41]
S.K. Sonawane, J. S. Gokhale, M.Z. Mulla, V.R. Kandu, S. Patil, A comprehensive overview of functional and rheological properties of aloe vera and its application in foods. Journal of Food Science and Technology, 58(2021) 1217-1226.
DOI: 10.1007/s13197-020-04661-6
Google Scholar
[42]
N. Nikafkar, Y.V. Alroaia, S.A. eydariyeh, A.J. Schleiss, A.J. (2023), Economic and commercial analysis of reusing dam reservoir sediments. Ecological Economics. 204(2023) 107668.
DOI: 10.1016/j.ecolecon.2022.107668
Google Scholar
[43]
J. Queiroz, P. Gasparinetti, L.B. Bakker, F. Lobo, G. Nagel, Socioeconomic cost of dredge boat gold mining in the Tapajós basin, eastern Amazon. Resources Policy, 79(2022) 103102.
DOI: 10.1016/j.resourpol.2022.103102
Google Scholar
[44]
N. Svensson, A. Norén, O. Modin, K.K. Fedje, S. Rauch, A.M. Strömvall, Y. Andersson-Sköld, Integrated cost and environmental impact assessment of management options for dredged sediment. Waste Management, 138(2022) 30-40.
DOI: 10.1016/j.wasman.2021.11.031
Google Scholar