Solar Radiation Prediction in Adrar, Algeria: A Case Study of Hybrid Extreme Machine-Based Techniques

Article Preview

Abstract:

This study delves into the application of hybrid extreme machine-based techniques for solar radiation prediction in Adrar, Algeria. The models under evaluation include the Extreme Learning Machine (ELM), Weighted Extreme Learning Machine (WELM), and Self-Adaptive Extreme Learning Machine (SA-ELM), with a comparative analysis based on various performance metrics. The results show that SA-ELM achieves the highest accuracy with an R2 of 0.97, outperforming ELM and WELM by 4.6% and 15.4% respectively in terms of R2. SA-ELM also has the lowest MPE, RMSE and RRMSE values, indicating a higher accuracy in predicting global radiation. Furthermore, comparison with previously employed prediction techniques solidifies SA-ELM’s superiority, evident in its 0.275 RMSE.The study explores different input combinations for predicting global radiation in the study region, concluding that incorporating all relevant inputs yields optimal performance, although reduced input scenarios can still provide practical accuracy when data availability is limited. These results highlight the effectiveness of the SA-ELM model in accurately predicting global radiation, which is expected to have significant implications for renewable energy applications in the region. However, further testing and evaluation of the models in different regions and under different weather conditions is recommended to improve the generalizability and robustness of the results.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] B. Haddad, P. Díaz-Cuevas, P. Ferreira, A. Djebli, and J. P. Pérez, "Mapping concentrated solar power site suitability in Algeria," Renew. Energy, vol. 168, p.838–853, 2021.

DOI: 10.1016/j.renene.2020.12.081

Google Scholar

[2] K. Bouchouicha, N. Bailek, A. Razagui, M. EL-Shimy, M. Bellaoui, et al., "Comparison of artificial intelligence and empirical models for energy production estimation of 20 MWp solar photovoltaic plant at the Saharan Medium of Algeria," Int. J. Energy Sect. Manag., 2020.

DOI: 10.1108/ijesm-12-2019-0017

Google Scholar

[3] S. B. D. Saiah and A. B. Stambouli, "Prospective analysis for a long-term optimal energy mix planning in Algeria: Towards high electricity generation security in 2062," Renew. Sustain. Energy Rev., vol. 73, p.26–43, 2017.

DOI: 10.1016/j.rser.2017.01.023

Google Scholar

[4] A. B. Stambouli, "Algerian renewable energy assessment: The challenge of sustainability," Energy Policy, vol. 39, no. 8, p.4507–4519, 2011.

DOI: 10.1016/j.enpol.2010.10.005

Google Scholar

[5] B. M. K. Khaider, G. Mohammed, and B. Meriem, "Renewable Energy in Algeria Reality and Perspective," J. Inf. Syst. Technol. Manag, vol. 3, no. 10, p.1–19, 2018.

Google Scholar

[6] P. Díaz-Cuevas, B. Haddad, and M. Fernandez-Nunez, "Energy for the future: Planning and mapping renewable energy. The case of Algeria," Sustain. Energy Technol. Assessments, vol. 47, p.101445, 2021.

DOI: 10.1016/j.seta.2021.101445

Google Scholar

[7] K. Abdeladim, S. Bouchakour, A. H. Arab, S. O. Amrouche, and N. Yassaa, "Promotion of renewable energy in some MENA region countries," in IOP Conference Series: Earth and Environmental Science, 2018, vol. 154, no. 1, p.12003.

DOI: 10.1088/1755-1315/154/1/012003

Google Scholar

[8] K. Bouchouicha, A. Razagui, N. I. Bachari, and N. Aoun, "Mapping and geospatial analysis of solar resource in Algeria," Int. J. Energy, Environ. Econ., vol. 23, no. 6, 2015.

Google Scholar

[9] M. EL-Shimy, H. Balcioglu, K. Soyer, M. A. Abdelraheem, M. Said, et al., "Economics of Variable Renewable Sources for Electric Power Production." Lambert Academic Publishing / Omniscriptum Gmbh & Company Kg, Editor …, 2017.

Google Scholar

[10] A. B. Stambouli and H. Koinuma, "The Sahara Solar Breeder (SSB) project contributes to global sustainable energy production and resource conservation: an overview," Environ. Sustain. Role Green Technol., p.107–119, 2014.

DOI: 10.1007/978-81-322-2056-5_6

Google Scholar

[11] N. Bailek, K. Bouchouicha, Z. Al-Mostafa, M. El-Shimy, N. Aoun, et al., "A new empirical model for forecasting the diffuse solar radiation over Sahara in the Algerian Big South," Renew. Energy, vol. 117, p.530–537, 2018.

DOI: 10.1016/j.renene.2017.10.081

Google Scholar

[12] P. Singla, M. Duhan, and S. Saroha, "A comprehensive review and analysis of solar forecasting techniques," Front. Energy, p.1–37, 2021.

DOI: 10.1007/s11708-021-0722-7

Google Scholar

[13] P. Nikolaidis, "Solar energy harnessing technologies towards de-carbonization: A systematic review of processes and systems," Energies, vol. 16, no. 17, p.6153, 2023.

DOI: 10.3390/en16176153

Google Scholar

[14] F. P. Marinho, P. A. C. Rocha, A. R. R. Neto, and F. D. V Bezerra, "Short-term solar irradiance forecasting using CNN-1D, LSTM, and CNN-LSTM deep neural networks: A case study with the Folsom (USA) dataset," J. Sol. Energy Eng., vol. 145, no. 4, p.41002, 2023.

DOI: 10.1115/1.4056122

Google Scholar

[15] R. Ahmed, V. Sreeram, Y. Mishra, and M. D. Arif, "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renew. Sustain. Energy Rev., vol. 124, no. February, p.109792, 2020.

DOI: 10.1016/j.rser.2020.109792

Google Scholar

[16] K. J. Iheanetu, "Solar Photovoltaic Power Forecasting: A Review," Sustain. 2022, Vol. 14, Page 17005, vol. 14, no. 24, p.17005, Dec. 2022.

DOI: 10.3390/su142417005

Google Scholar

[17] M. Guermoui, K. Bouchouicha, S. Benkaciali, K. Gairaa,"New soft computing model for multi-hours forecasting of global solar radiation," Eur. Phys. J. Plus, vol. 137, no. 1, p.162, 2022.

DOI: 10.1140/epjp/s13360-021-02263-5

Google Scholar

[18] K. Bouchouicha, N. Bailek, M. Bellaoui, B. Oulimar, and D. Benatiallah, "ANN-based correction model of radiation and temperature for solar energy application in South of Algeria," in Artificial Intelligence and Renewables Towards an Energy Transition 4, 2021, p.584–591.

DOI: 10.1007/978-3-030-63846-7_55

Google Scholar

[19] A. Razagui, K. Abdeladim, K. Bouchouicha, N. Bachari, S. Semaoui, et al., "A new approach to forecast solar irradiances using WRF and libRadtran models, validated with MERRA-2 reanalysis data and pyranometer measures," Sol. Energy, vol. 221, p.148–161, Jun. 2021.

DOI: 10.1016/j.solener.2021.04.024

Google Scholar

[20] L. Zou, L. Wang, A. Lin, H. Zhu, Y. Peng, et al., "Estimation of global solar radiation using an artificial neural network based on an interpolation technique in southeast China," J. Atmos. Solar-Terrestrial Phys., vol. 146, p.110–122, 2016.

DOI: 10.1016/j.jastp.2016.05.013

Google Scholar

[21] A. Rahimikhoob, "Estimating global solar radiation using artificial neural network and air temperature data in a semi-arid environment," Renew. Energy, vol. 35, no. 9, p.2131–2135, 2010.

DOI: 10.1016/j.renene.2010.01.029

Google Scholar

[22] T. Krishnaiah, S. S. Rao, and K. Madhumurthy, "Solar Stirling Dish Power Generation Atlas of India," Cogener. & Distrib. Gener. J., vol. 24, no. 2, p.35–50, 2009.

DOI: 10.1080/15453660909509007

Google Scholar

[23] Ö. A. Karaman, T. T. Ağır, and İ. Arsel, "Estimation of solar radiation using modern methods," Alexandria Eng. J., vol. 60, no. 2, p.2447–2455, 2021.

DOI: 10.1016/j.aej.2020.12.048

Google Scholar

[24] S. Salcedo-Sanz, C. Casanova-Mateo, A. Pastor-Sánchez, and M. Sánchez-Girón, "Daily global solar radiation prediction based on a hybrid Coral Reefs Optimization–Extreme Learning Machine approach," Sol. Energy, vol. 105, p.91–98, 2014.

DOI: 10.1016/j.solener.2014.04.009

Google Scholar

[25] L. Olatomiwa, S. Mekhilef, S. Shamshirband, K. Mohammadi, D. Petković, et al., "A support vector machine–firefly algorithm-based model for global solar radiation prediction," Sol. Energy, vol. 115, p.632–644, 2015.

DOI: 10.1016/j.solener.2015.03.015

Google Scholar

[26] A. Aybar-Ruiz, S. Jiménez-Fernández, L. Cornejo-Bueno, C. Casanova-Mateo, J. Sanz-Justo, et al., "A novel Grouping Genetic Algorithm–Extreme Learning Machine approach for global solar radiation prediction from numerical weather models inputs," Sol. Energy, vol. 132, p.129–142, 2016.

DOI: 10.1016/j.solener.2016.03.015

Google Scholar

[27] Y. Feng, W. Hao, H. Li, N. Cui, D. Gong, et al., "Machine learning models to quantify and map daily global solar radiation and photovoltaic power," Renew. Sustain. Energy Rev., vol. 118, p.109393, 2020.

DOI: 10.1016/j.rser.2019.109393

Google Scholar

[28] A. Benhamrouche, D. Boucherf, R. Hamadache, L. Bendahmane, J. Martin-Vide, et al., "Spatial distribution of the daily precipitation concentration index in Algeria," Nat. Hazards Earth Syst. Sci., vol. 15, no. 3, p.617–625, 2015.

DOI: 10.5194/nhess-15-617-2015

Google Scholar

[29] N. Bailek, K. Bouchouicha, M. El-Shimy, and A. Slimani, "Updated status of renewable and sustainable energy projects in Algeria," Econ. Var. Renew. sources Electr. power Prod., p.519–528, 2017.

Google Scholar

[30] A. J. Annema, K. Hoen, and H. Wallinga, "Precision requirements for single-layer feedforward neural networks," in Microelectronics for Neural Networks and Fuzzy Systems, 1994., Proceedings of the Fourth International Conference on, 1994, p.145–151.

DOI: 10.1109/icmnn.1994.593243

Google Scholar

[31] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: a new learning scheme of feedforward neural networks," in Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on, 2004, vol. 2, p.985–990.

DOI: 10.1109/ijcnn.2004.1380068

Google Scholar

[32] S. Salcedo-Sanz, S. Jiménez-Fernández, A. Aybar-Ruiz, C. Casanova-Mateo, J. Sanz-Justo, et al., "A CRO-species optimization scheme for robust global solar radiation statistical downscaling," Renew. Energy, vol. 111, p.63–76, 2017.

DOI: 10.1016/j.renene.2017.03.079

Google Scholar

[33] W. Zong, G.-B. Huang, and Y. Chen, "Weighted extreme learning machine for imbalance learning," Neurocomputing, vol. 101, p.229–242, 2013.

DOI: 10.1016/j.neucom.2012.08.010

Google Scholar

[34] K. Li, X. Kong, Z. Lu, L. Wenyin, and J. Yin, "Boosting weighted ELM for imbalanced learning," Neurocomputing, vol. 128, p.15–21, 2014.

DOI: 10.1016/j.neucom.2013.05.051

Google Scholar

[35] B. Nahvi, J. Habibi, K. Mohammadi, S. Shamshirband, and O. S. Al Razgan, "Using self-adaptive evolutionary algorithm to improve the performance of an extreme learning machine for estimating soil temperature," Comput. Electron. Agric., vol. 124, p.150–160, 2016.

DOI: 10.1016/j.compag.2016.03.025

Google Scholar

[36] G.-G. Wang, M. Lu, Y.-Q. Dong, and X.-J. Zhao, "Self-adaptive extreme learning machine," Neural Comput. Appl., vol. 27, no. 2, p.291–303, 2016.

DOI: 10.1007/s00521-015-1874-3

Google Scholar

[37] L. Wang, O. Kisi, M. Zounemat-Kermani, and H. Li, "Pan evaporation modeling using six different heuristic computing methods in different climates of China," J. Hydrol., vol. 544, p.407–427, 2017.

DOI: 10.1016/j.jhydrol.2016.11.059

Google Scholar

[38] M. A. Hassan, H. Salem, N. Bailek, and O. Kisi, "Random Forest Ensemble-Based Predictions of On-Road Vehicular Emissions and Fuel Consumption in Developing Urban Areas," Sustainability, 2023.

DOI: 10.3390/su15021503

Google Scholar

[39] M. H. Yehia, M. A. Hassan, N. Abed, A. Khalil, and N. Bailek, "Combined Thermal Performance Enhancement of Parabolic Trough Collectors Using Alumina Nanoparticles and Internal Fins," in International Journal of Engineering Research in Africa, 2022, vol. 62, p.107–132.

DOI: 10.4028/p-63cdb1

Google Scholar

[40] N. Bailek and M. Saber, "Prediction Of Diseases in Smart Healthcare System Using Machine Learning," J. Artif. Intell. Metaheuristics, vol. 3, p.48–55, 2023.

Google Scholar

[41] M. A. Hassan, A. Khalil, S. Kaseb, and M. A. Kassem, "Exploring the potential of tree-based ensemble methods in solar radiation modeling," Appl. Energy, vol. 203, p.897–916, 2017.

DOI: 10.1016/j.apenergy.2017.06.104

Google Scholar

[42] K. Bouchouicha, M. A. Hassan, N. Bailek, and N. Aoun, "Estimating the global solar irradiation and optimizing the error estimates under Algerian desert climate," Renew. energy, vol. 139, p.844–858, 2019.

DOI: 10.1016/j.renene.2019.02.071

Google Scholar

[43] A. Khezazna, H. Amarchi, O. Derdous, and F. Bousakhria, "Drought monitoring in the Seybouse basin (Algeria) over the last decades," J. water L. Dev., vol. 33, no. 1, p.79, 2017.

DOI: 10.1515/jwld-2017-0022

Google Scholar

[44] B. Jamil, K. Irshad, A. Algahtani, S. Islam, M. A. Ali, et al., "On the calibration and applicability of global solar radiation models based on temperature extremities in India," Environ. Prog. Sustain. Energy, p. e13236.

DOI: 10.1002/ep.13236

Google Scholar

[45] K. Bouchouicha, N. Bailek, M. E.-S. Mahmoud, J. A. Alonso, A. Slimani, et al., "Estimation of Monthly Average Daily Global Solar Radiation Using Meteorological-Based Models in Adrar, Algeria," Appl. Sol. Energy, vol. 54, no. 6, p.448–455, 2018.

DOI: 10.3103/s0003701x1806004x

Google Scholar

[46] K. Ouali and R. Alkama, "A new model of global solar radiation based on meteorological data in Bejaia City (Algeria)," Energy Procedia, vol. 50, p.670–676, 2014.

DOI: 10.1016/j.egypro.2014.06.082

Google Scholar

[47] B. Jamil and N. Akhtar, "Estimation of diffuse solar radiation in humid-subtropical climatic region of India: Comparison of diffuse fraction and diffusion coefficient models," Energy, vol. 131, p.149–164, 2017.

DOI: 10.1016/j.energy.2017.05.018

Google Scholar

[48] Z. Ramedani, M. Omid, A. Keyhani, S. Shamshirband, and B. Khoshnevisan, "Potential of radial basis function based support vector regression for global solar radiation prediction," Renew. Sustain. Energy Rev., vol. 39, p.1005–1011, 2014.

DOI: 10.1016/j.rser.2014.07.108

Google Scholar

[49] Z. Ramedani, M. Omid, A. Keyhani, B. Khoshnevisan, and H. Saboohi, "A comparative study between fuzzy linear regression and support vector regression for global solar radiation prediction in Iran," Sol. Energy, vol. 109, p.135–143, 2014.

DOI: 10.1016/j.solener.2014.08.023

Google Scholar