[1]
B. Haddad, P. Díaz-Cuevas, P. Ferreira, A. Djebli, and J. P. Pérez, "Mapping concentrated solar power site suitability in Algeria," Renew. Energy, vol. 168, p.838–853, 2021.
DOI: 10.1016/j.renene.2020.12.081
Google Scholar
[2]
K. Bouchouicha, N. Bailek, A. Razagui, M. EL-Shimy, M. Bellaoui, et al., "Comparison of artificial intelligence and empirical models for energy production estimation of 20 MWp solar photovoltaic plant at the Saharan Medium of Algeria," Int. J. Energy Sect. Manag., 2020.
DOI: 10.1108/ijesm-12-2019-0017
Google Scholar
[3]
S. B. D. Saiah and A. B. Stambouli, "Prospective analysis for a long-term optimal energy mix planning in Algeria: Towards high electricity generation security in 2062," Renew. Sustain. Energy Rev., vol. 73, p.26–43, 2017.
DOI: 10.1016/j.rser.2017.01.023
Google Scholar
[4]
A. B. Stambouli, "Algerian renewable energy assessment: The challenge of sustainability," Energy Policy, vol. 39, no. 8, p.4507–4519, 2011.
DOI: 10.1016/j.enpol.2010.10.005
Google Scholar
[5]
B. M. K. Khaider, G. Mohammed, and B. Meriem, "Renewable Energy in Algeria Reality and Perspective," J. Inf. Syst. Technol. Manag, vol. 3, no. 10, p.1–19, 2018.
Google Scholar
[6]
P. Díaz-Cuevas, B. Haddad, and M. Fernandez-Nunez, "Energy for the future: Planning and mapping renewable energy. The case of Algeria," Sustain. Energy Technol. Assessments, vol. 47, p.101445, 2021.
DOI: 10.1016/j.seta.2021.101445
Google Scholar
[7]
K. Abdeladim, S. Bouchakour, A. H. Arab, S. O. Amrouche, and N. Yassaa, "Promotion of renewable energy in some MENA region countries," in IOP Conference Series: Earth and Environmental Science, 2018, vol. 154, no. 1, p.12003.
DOI: 10.1088/1755-1315/154/1/012003
Google Scholar
[8]
K. Bouchouicha, A. Razagui, N. I. Bachari, and N. Aoun, "Mapping and geospatial analysis of solar resource in Algeria," Int. J. Energy, Environ. Econ., vol. 23, no. 6, 2015.
Google Scholar
[9]
M. EL-Shimy, H. Balcioglu, K. Soyer, M. A. Abdelraheem, M. Said, et al., "Economics of Variable Renewable Sources for Electric Power Production." Lambert Academic Publishing / Omniscriptum Gmbh & Company Kg, Editor …, 2017.
Google Scholar
[10]
A. B. Stambouli and H. Koinuma, "The Sahara Solar Breeder (SSB) project contributes to global sustainable energy production and resource conservation: an overview," Environ. Sustain. Role Green Technol., p.107–119, 2014.
DOI: 10.1007/978-81-322-2056-5_6
Google Scholar
[11]
N. Bailek, K. Bouchouicha, Z. Al-Mostafa, M. El-Shimy, N. Aoun, et al., "A new empirical model for forecasting the diffuse solar radiation over Sahara in the Algerian Big South," Renew. Energy, vol. 117, p.530–537, 2018.
DOI: 10.1016/j.renene.2017.10.081
Google Scholar
[12]
P. Singla, M. Duhan, and S. Saroha, "A comprehensive review and analysis of solar forecasting techniques," Front. Energy, p.1–37, 2021.
DOI: 10.1007/s11708-021-0722-7
Google Scholar
[13]
P. Nikolaidis, "Solar energy harnessing technologies towards de-carbonization: A systematic review of processes and systems," Energies, vol. 16, no. 17, p.6153, 2023.
DOI: 10.3390/en16176153
Google Scholar
[14]
F. P. Marinho, P. A. C. Rocha, A. R. R. Neto, and F. D. V Bezerra, "Short-term solar irradiance forecasting using CNN-1D, LSTM, and CNN-LSTM deep neural networks: A case study with the Folsom (USA) dataset," J. Sol. Energy Eng., vol. 145, no. 4, p.41002, 2023.
DOI: 10.1115/1.4056122
Google Scholar
[15]
R. Ahmed, V. Sreeram, Y. Mishra, and M. D. Arif, "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renew. Sustain. Energy Rev., vol. 124, no. February, p.109792, 2020.
DOI: 10.1016/j.rser.2020.109792
Google Scholar
[16]
K. J. Iheanetu, "Solar Photovoltaic Power Forecasting: A Review," Sustain. 2022, Vol. 14, Page 17005, vol. 14, no. 24, p.17005, Dec. 2022.
DOI: 10.3390/su142417005
Google Scholar
[17]
M. Guermoui, K. Bouchouicha, S. Benkaciali, K. Gairaa,"New soft computing model for multi-hours forecasting of global solar radiation," Eur. Phys. J. Plus, vol. 137, no. 1, p.162, 2022.
DOI: 10.1140/epjp/s13360-021-02263-5
Google Scholar
[18]
K. Bouchouicha, N. Bailek, M. Bellaoui, B. Oulimar, and D. Benatiallah, "ANN-based correction model of radiation and temperature for solar energy application in South of Algeria," in Artificial Intelligence and Renewables Towards an Energy Transition 4, 2021, p.584–591.
DOI: 10.1007/978-3-030-63846-7_55
Google Scholar
[19]
A. Razagui, K. Abdeladim, K. Bouchouicha, N. Bachari, S. Semaoui, et al., "A new approach to forecast solar irradiances using WRF and libRadtran models, validated with MERRA-2 reanalysis data and pyranometer measures," Sol. Energy, vol. 221, p.148–161, Jun. 2021.
DOI: 10.1016/j.solener.2021.04.024
Google Scholar
[20]
L. Zou, L. Wang, A. Lin, H. Zhu, Y. Peng, et al., "Estimation of global solar radiation using an artificial neural network based on an interpolation technique in southeast China," J. Atmos. Solar-Terrestrial Phys., vol. 146, p.110–122, 2016.
DOI: 10.1016/j.jastp.2016.05.013
Google Scholar
[21]
A. Rahimikhoob, "Estimating global solar radiation using artificial neural network and air temperature data in a semi-arid environment," Renew. Energy, vol. 35, no. 9, p.2131–2135, 2010.
DOI: 10.1016/j.renene.2010.01.029
Google Scholar
[22]
T. Krishnaiah, S. S. Rao, and K. Madhumurthy, "Solar Stirling Dish Power Generation Atlas of India," Cogener. & Distrib. Gener. J., vol. 24, no. 2, p.35–50, 2009.
DOI: 10.1080/15453660909509007
Google Scholar
[23]
Ö. A. Karaman, T. T. Ağır, and İ. Arsel, "Estimation of solar radiation using modern methods," Alexandria Eng. J., vol. 60, no. 2, p.2447–2455, 2021.
DOI: 10.1016/j.aej.2020.12.048
Google Scholar
[24]
S. Salcedo-Sanz, C. Casanova-Mateo, A. Pastor-Sánchez, and M. Sánchez-Girón, "Daily global solar radiation prediction based on a hybrid Coral Reefs Optimization–Extreme Learning Machine approach," Sol. Energy, vol. 105, p.91–98, 2014.
DOI: 10.1016/j.solener.2014.04.009
Google Scholar
[25]
L. Olatomiwa, S. Mekhilef, S. Shamshirband, K. Mohammadi, D. Petković, et al., "A support vector machine–firefly algorithm-based model for global solar radiation prediction," Sol. Energy, vol. 115, p.632–644, 2015.
DOI: 10.1016/j.solener.2015.03.015
Google Scholar
[26]
A. Aybar-Ruiz, S. Jiménez-Fernández, L. Cornejo-Bueno, C. Casanova-Mateo, J. Sanz-Justo, et al., "A novel Grouping Genetic Algorithm–Extreme Learning Machine approach for global solar radiation prediction from numerical weather models inputs," Sol. Energy, vol. 132, p.129–142, 2016.
DOI: 10.1016/j.solener.2016.03.015
Google Scholar
[27]
Y. Feng, W. Hao, H. Li, N. Cui, D. Gong, et al., "Machine learning models to quantify and map daily global solar radiation and photovoltaic power," Renew. Sustain. Energy Rev., vol. 118, p.109393, 2020.
DOI: 10.1016/j.rser.2019.109393
Google Scholar
[28]
A. Benhamrouche, D. Boucherf, R. Hamadache, L. Bendahmane, J. Martin-Vide, et al., "Spatial distribution of the daily precipitation concentration index in Algeria," Nat. Hazards Earth Syst. Sci., vol. 15, no. 3, p.617–625, 2015.
DOI: 10.5194/nhess-15-617-2015
Google Scholar
[29]
N. Bailek, K. Bouchouicha, M. El-Shimy, and A. Slimani, "Updated status of renewable and sustainable energy projects in Algeria," Econ. Var. Renew. sources Electr. power Prod., p.519–528, 2017.
Google Scholar
[30]
A. J. Annema, K. Hoen, and H. Wallinga, "Precision requirements for single-layer feedforward neural networks," in Microelectronics for Neural Networks and Fuzzy Systems, 1994., Proceedings of the Fourth International Conference on, 1994, p.145–151.
DOI: 10.1109/icmnn.1994.593243
Google Scholar
[31]
G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: a new learning scheme of feedforward neural networks," in Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on, 2004, vol. 2, p.985–990.
DOI: 10.1109/ijcnn.2004.1380068
Google Scholar
[32]
S. Salcedo-Sanz, S. Jiménez-Fernández, A. Aybar-Ruiz, C. Casanova-Mateo, J. Sanz-Justo, et al., "A CRO-species optimization scheme for robust global solar radiation statistical downscaling," Renew. Energy, vol. 111, p.63–76, 2017.
DOI: 10.1016/j.renene.2017.03.079
Google Scholar
[33]
W. Zong, G.-B. Huang, and Y. Chen, "Weighted extreme learning machine for imbalance learning," Neurocomputing, vol. 101, p.229–242, 2013.
DOI: 10.1016/j.neucom.2012.08.010
Google Scholar
[34]
K. Li, X. Kong, Z. Lu, L. Wenyin, and J. Yin, "Boosting weighted ELM for imbalanced learning," Neurocomputing, vol. 128, p.15–21, 2014.
DOI: 10.1016/j.neucom.2013.05.051
Google Scholar
[35]
B. Nahvi, J. Habibi, K. Mohammadi, S. Shamshirband, and O. S. Al Razgan, "Using self-adaptive evolutionary algorithm to improve the performance of an extreme learning machine for estimating soil temperature," Comput. Electron. Agric., vol. 124, p.150–160, 2016.
DOI: 10.1016/j.compag.2016.03.025
Google Scholar
[36]
G.-G. Wang, M. Lu, Y.-Q. Dong, and X.-J. Zhao, "Self-adaptive extreme learning machine," Neural Comput. Appl., vol. 27, no. 2, p.291–303, 2016.
DOI: 10.1007/s00521-015-1874-3
Google Scholar
[37]
L. Wang, O. Kisi, M. Zounemat-Kermani, and H. Li, "Pan evaporation modeling using six different heuristic computing methods in different climates of China," J. Hydrol., vol. 544, p.407–427, 2017.
DOI: 10.1016/j.jhydrol.2016.11.059
Google Scholar
[38]
M. A. Hassan, H. Salem, N. Bailek, and O. Kisi, "Random Forest Ensemble-Based Predictions of On-Road Vehicular Emissions and Fuel Consumption in Developing Urban Areas," Sustainability, 2023.
DOI: 10.3390/su15021503
Google Scholar
[39]
M. H. Yehia, M. A. Hassan, N. Abed, A. Khalil, and N. Bailek, "Combined Thermal Performance Enhancement of Parabolic Trough Collectors Using Alumina Nanoparticles and Internal Fins," in International Journal of Engineering Research in Africa, 2022, vol. 62, p.107–132.
DOI: 10.4028/p-63cdb1
Google Scholar
[40]
N. Bailek and M. Saber, "Prediction Of Diseases in Smart Healthcare System Using Machine Learning," J. Artif. Intell. Metaheuristics, vol. 3, p.48–55, 2023.
Google Scholar
[41]
M. A. Hassan, A. Khalil, S. Kaseb, and M. A. Kassem, "Exploring the potential of tree-based ensemble methods in solar radiation modeling," Appl. Energy, vol. 203, p.897–916, 2017.
DOI: 10.1016/j.apenergy.2017.06.104
Google Scholar
[42]
K. Bouchouicha, M. A. Hassan, N. Bailek, and N. Aoun, "Estimating the global solar irradiation and optimizing the error estimates under Algerian desert climate," Renew. energy, vol. 139, p.844–858, 2019.
DOI: 10.1016/j.renene.2019.02.071
Google Scholar
[43]
A. Khezazna, H. Amarchi, O. Derdous, and F. Bousakhria, "Drought monitoring in the Seybouse basin (Algeria) over the last decades," J. water L. Dev., vol. 33, no. 1, p.79, 2017.
DOI: 10.1515/jwld-2017-0022
Google Scholar
[44]
B. Jamil, K. Irshad, A. Algahtani, S. Islam, M. A. Ali, et al., "On the calibration and applicability of global solar radiation models based on temperature extremities in India," Environ. Prog. Sustain. Energy, p. e13236.
DOI: 10.1002/ep.13236
Google Scholar
[45]
K. Bouchouicha, N. Bailek, M. E.-S. Mahmoud, J. A. Alonso, A. Slimani, et al., "Estimation of Monthly Average Daily Global Solar Radiation Using Meteorological-Based Models in Adrar, Algeria," Appl. Sol. Energy, vol. 54, no. 6, p.448–455, 2018.
DOI: 10.3103/s0003701x1806004x
Google Scholar
[46]
K. Ouali and R. Alkama, "A new model of global solar radiation based on meteorological data in Bejaia City (Algeria)," Energy Procedia, vol. 50, p.670–676, 2014.
DOI: 10.1016/j.egypro.2014.06.082
Google Scholar
[47]
B. Jamil and N. Akhtar, "Estimation of diffuse solar radiation in humid-subtropical climatic region of India: Comparison of diffuse fraction and diffusion coefficient models," Energy, vol. 131, p.149–164, 2017.
DOI: 10.1016/j.energy.2017.05.018
Google Scholar
[48]
Z. Ramedani, M. Omid, A. Keyhani, S. Shamshirband, and B. Khoshnevisan, "Potential of radial basis function based support vector regression for global solar radiation prediction," Renew. Sustain. Energy Rev., vol. 39, p.1005–1011, 2014.
DOI: 10.1016/j.rser.2014.07.108
Google Scholar
[49]
Z. Ramedani, M. Omid, A. Keyhani, B. Khoshnevisan, and H. Saboohi, "A comparative study between fuzzy linear regression and support vector regression for global solar radiation prediction in Iran," Sol. Energy, vol. 109, p.135–143, 2014.
DOI: 10.1016/j.solener.2014.08.023
Google Scholar