Quantification and Optimization of Compaction Energy Used in Earth Construction: Case of Static and Dynamic Compaction

Article Preview

Abstract:

Earth construction is a sustainable and environmentally friendly approach to building. In addition to their good thermal performance, earth materials are abundant, inexpensive, and readily available, reducing the need for resource-intensive materials like concrete and steel. Regarding the construction process of earth structures, which is based on compaction, there is often a difference between the laboratory compaction process and the onsite one. The energy consumed onsite to produce earth structures is still approximative and uncontrolled, which affects considerably the mechanical performances of earth walls. Then, the investigation of the optimal compaction energy is necessary. To optimize the on-site compaction energy used in rammed earth (RE), an experimental study is carried out to compare the dynamic compaction usually applied to produce RE walls to the static compaction using a mechanical press. By considering increasing dynamic and static energies, the physical and mechanical properties are analyzed for each case. The obtained results show that RE walls can be replaced by prefabricated pressed earth blocks where the compaction energy is reduced by 60% and the compressive strength is enhanced by 70% using static compaction, thus achieving 4 MPa without stabilization. This solution allows to reduce the execution time and to control the quality of earth buildings.

You might also be interested in these eBooks

Info:

Pages:

67-84

Citation:

Online since:

April 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Dialmy, M. Rguig, and M. Meliani, 'Optimization of the Granular Mixture of Natural Rammed Earth Using Compressible Packing Model', Sustainability, vol. 15, no. 3, p.2698, Feb. 2023.

DOI: 10.3390/su15032698

Google Scholar

[2] D. Ciancio, C. T. S. Beckett, and J. A. H. Carraro, 'Optimum lime content identification for lime-stabilised rammed earth', Construction and Building Materials, vol. 53, p.59–65, Feb. 2014.

DOI: 10.1016/j.conbuildmat.2013.11.077

Google Scholar

[3] N. Cristelo, S. Glendinning, T. Miranda, D. Oliveira, and R. Silva, 'Soil stabilization using alkaline activation of fly ash for self-compacting rammed earth construction', Construction and building materials, vol. 36, p.727–735, 2012.

DOI: 10.1016/j.conbuildmat.2012.06.037

Google Scholar

[4] C. Jayasinghe and N. Kamaladasa, 'Compressive strength characteristics of cement stabilized rammed earth walls', Construction and Building Materials, vol. 21, no. 11, p.1971–1976, Nov. 2007.

DOI: 10.1016/j.conbuildmat.2006.05.049

Google Scholar

[5] V. Toufigh, S. Ghasemalizadeh, and M. Karamian, 'Experimental Investigation of Mixture Design and Durability Performance of Alkali-Activated Rammed Earth', International Journal of Geomechanics, vol. 22, no. 4, p.04022029, 2022.

DOI: 10.1061/(asce)gm.1943-5622.0002316

Google Scholar

[6] AFNOR, 'NF P94-093 Soils: investigation and testing - Determination of the compaction reference values of a soil type - Standard proctor test - Modified proctor test'. 2015.

Google Scholar

[7] B. V. Venkatarama Reddy and P. Prasanna Kumar, 'Cement stabilized rammed earth. Part A: compaction characteristics and physical properties of compacted cement stabilized soils', Mater Struct, vol. 44, no. 3, p.681–693, Apr. 2011.

DOI: 10.1617/s11527-010-9658-9

Google Scholar

[8] B.V. Venkatarama Reddy and P. Prasanna Kumar, 'Embodied energy in cement stabilized rammed earth walls', Energy and Buildings, vol. 42, no. 3, p.380–385, Mar. 2010.

DOI: 10.1016/j.enbuild.2009.10.005

Google Scholar

[9] H. Houben and H. Guillaud, Traité de construction en terre. 1989.

Google Scholar

[10] A. Zhemchuzhnikov, K. Ghavami, and M. dal Toé Casagrande, 'Static Compaction of Soils with Varying Clay Content', KEM, vol. 668, p.238–246, Oct. 2015.

DOI: 10.4028/www.scientific.net/KEM.668.238

Google Scholar

[11] S. Burroughs, 'Recommendations for the Selection, Stabilization, and Compaction of Soil for Rammed Earth Wall Construction', Journal of Green Building, vol. 5, no. 1, p.101–114, Feb. 2010.

DOI: 10.3992/jgb.5.1.101

Google Scholar

[12] D.D. Tripura and K.D. Singh, 'Characteristic Properties of Cement-Stabilized Rammed Earth Blocks', J. Mater. Civ. Eng., vol. 27, no. 7, p.04014214, Jul. 2015, doi: 10.1061/(ASCE)MT. 1943-5533.0001170.

DOI: 10.1061/(asce)mt.1943-5533.0001170

Google Scholar

[13] F. Ávila, E. Puertas, and R. Gallego, 'Characterization of the mechanical and physical properties of unstabilized rammed earth: A review', Construction and Building Materials, vol. 270, p.121435, Feb. 2021.

DOI: 10.1016/j.conbuildmat.2020.121435

Google Scholar

[14] P. Walker and Standards Australia International, The Australian earth building handbook. Sydney: Standards Australia International, 2000.

Google Scholar

[15] Ministère de l'Intérieur, Ministère de l'Equipment et du Transport, Ministère de l'Habitat, de l'Urbanisme et de la Politique de la ville, 'Règlement parasismique des constructions en terre', RPCTerre 2011, 2001.

DOI: 10.4000/books.insep.799

Google Scholar

[16] Joint Australia/New Zealand Technical Committee - Standards New Zealand, 1998, 'NZS 4298 (1998): Materials and workmanship for earth buildings. Materials and workmanship for earth buildings. 1998.

Google Scholar

[17] B. Manak, 'IS 13827: Improving earthquake resistance of earthen buildings-guidelines'. 1993.

Google Scholar

[18] F.V. Riza, I.A. Rahman, and A.M.A. Zaidi, 'A brief review of compressed stabilized earth brick (CSEB)', in 2010 International Conference on Science and Social Research (CSSR 2010), IEEE, 2010, p.999–1004.

DOI: 10.1109/cssr.2010.5773936

Google Scholar

[19] CRATerre-EAG : HOUBEN, Hugo ; CDI : BOUBEKEUR, S, 'Blocs de terre comprimée : Normes (Guide Série Technologies N° 11)'. 1998.

Google Scholar

[20] M. Olivier, 'Le matériau terre Essai de compactage statique pour la fabrication de briques de terre compressées', Aug. 2023.

Google Scholar

[21] J.-C. Morel, A. Pkla, and P. Walker, 'Compressive strength testing of compressed earth blocks', Construction and Building Materials, vol. 21, no. 2, p.303–309, Feb. 2007.

DOI: 10.1016/j.conbuildmat.2005.08.021

Google Scholar

[22] AFNOR, 'NF P94-051 Soil: investigation and testing. Determination of Atterberg's limits. Liquid limit test using cassagrande apparatus. Plastic limit test on rolled thread.' 1993.

Google Scholar

[23] AFNOR, 'NF P94-056 Soil: investigation and testing. Granulometric analysis. Dry sieving method after washing.' 1996.

Google Scholar

[24] AFNOR, 'NF EN ISO 11272 Soil quality - Determination of dry bulk density'. 2014.

Google Scholar

[25] AFNOR, 'NF EN 12390-4 Testing hardened concrete - Part 4: compressive strength - Specification for testing machines'. 2020.

DOI: 10.3403/01891186u

Google Scholar

[26] M. F. Attom, 'The effect of compactive energy level on some soil properties', Applied Clay Science, vol. 12, no. 1–2, p.61–72, 1997.

DOI: 10.1016/s0169-1317(96)00037-3

Google Scholar

[27] B. V. Venkatarama and K. S. Jagadish, 'The static compaction of soils.

Google Scholar

[28] M. A. Mesbah, J.-C. Morel, and M. Olivier, 'Clayey soil behavior under static compaction test', Materials and Structures, vol. 32, p.687–694, Nov. 1999.

Google Scholar

[29] A. Le Roux and A. Rivière, 'Traitement des sols argileux par la chaux', Bulletin de Liaison des Laboratoires des Ponts et Chaussées, Paris (40), p.59–95, 1969.

DOI: 10.1016/s0152-9668(02)80033-x

Google Scholar

[30] S. M. Rao and P. Shivananda, 'Swelling behavior of lime-stabilized specimens after wetting and drying cycles', in Workshop in clay behavior: chemico-mechanical coupling from nanostructures to engineering applications, 2001.

Google Scholar

[31] J. L. Eades and R. E. Grim, 'Reaction of hydrated lime with pure clay minerals in soil stabilization', Highway Research Board Bulletin, no. 262, 1960.

Google Scholar

[32] F. Ávila, E. Puertas, and R. Gallego, 'Mechanical characterization of lime-stabilized rammed earth: Lime content and strength development', Construction and Building Materials, vol. 350, p.128871, Oct. 2022.

DOI: 10.1016/j.conbuildmat.2022.128871

Google Scholar

[33] D. O. A. Osula, 'A comparative evaluation of cement and lime modification of laterite', Engineering geology, vol. 42, no. 1, p.71–81, 1996.

DOI: 10.1016/0013-7952(95)00067-4

Google Scholar

[34] H. Brandl, 'Alteration of soil parameters by stabilization with lime', in Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Volume 3, Stockholm., 1981.

Google Scholar

[35] G. H. Hilt and D. T. Davidson, 'Lime fixation in clayey soils', Highway Research Board Bulletin, no. 262, 1960.

Google Scholar

[36] D. Deneele, O. Cuisinier, and J. C. Auriol, 'Etude microstructural du limon traité à la chaux'. Paris: LCPC, 2009.

Google Scholar

[37] 'Norme NF X35-109 - Évaluation de la manutention manuelle', Nawo Solution. Accessed: Aug. 05, 2023.

Google Scholar