[1]
A. Dialmy, M. Rguig, and M. Meliani, 'Optimization of the Granular Mixture of Natural Rammed Earth Using Compressible Packing Model', Sustainability, vol. 15, no. 3, p.2698, Feb. 2023.
DOI: 10.3390/su15032698
Google Scholar
[2]
D. Ciancio, C. T. S. Beckett, and J. A. H. Carraro, 'Optimum lime content identification for lime-stabilised rammed earth', Construction and Building Materials, vol. 53, p.59–65, Feb. 2014.
DOI: 10.1016/j.conbuildmat.2013.11.077
Google Scholar
[3]
N. Cristelo, S. Glendinning, T. Miranda, D. Oliveira, and R. Silva, 'Soil stabilization using alkaline activation of fly ash for self-compacting rammed earth construction', Construction and building materials, vol. 36, p.727–735, 2012.
DOI: 10.1016/j.conbuildmat.2012.06.037
Google Scholar
[4]
C. Jayasinghe and N. Kamaladasa, 'Compressive strength characteristics of cement stabilized rammed earth walls', Construction and Building Materials, vol. 21, no. 11, p.1971–1976, Nov. 2007.
DOI: 10.1016/j.conbuildmat.2006.05.049
Google Scholar
[5]
V. Toufigh, S. Ghasemalizadeh, and M. Karamian, 'Experimental Investigation of Mixture Design and Durability Performance of Alkali-Activated Rammed Earth', International Journal of Geomechanics, vol. 22, no. 4, p.04022029, 2022.
DOI: 10.1061/(asce)gm.1943-5622.0002316
Google Scholar
[6]
AFNOR, 'NF P94-093 Soils: investigation and testing - Determination of the compaction reference values of a soil type - Standard proctor test - Modified proctor test'. 2015.
Google Scholar
[7]
B. V. Venkatarama Reddy and P. Prasanna Kumar, 'Cement stabilized rammed earth. Part A: compaction characteristics and physical properties of compacted cement stabilized soils', Mater Struct, vol. 44, no. 3, p.681–693, Apr. 2011.
DOI: 10.1617/s11527-010-9658-9
Google Scholar
[8]
B.V. Venkatarama Reddy and P. Prasanna Kumar, 'Embodied energy in cement stabilized rammed earth walls', Energy and Buildings, vol. 42, no. 3, p.380–385, Mar. 2010.
DOI: 10.1016/j.enbuild.2009.10.005
Google Scholar
[9]
H. Houben and H. Guillaud, Traité de construction en terre. 1989.
Google Scholar
[10]
A. Zhemchuzhnikov, K. Ghavami, and M. dal Toé Casagrande, 'Static Compaction of Soils with Varying Clay Content', KEM, vol. 668, p.238–246, Oct. 2015.
DOI: 10.4028/www.scientific.net/KEM.668.238
Google Scholar
[11]
S. Burroughs, 'Recommendations for the Selection, Stabilization, and Compaction of Soil for Rammed Earth Wall Construction', Journal of Green Building, vol. 5, no. 1, p.101–114, Feb. 2010.
DOI: 10.3992/jgb.5.1.101
Google Scholar
[12]
D.D. Tripura and K.D. Singh, 'Characteristic Properties of Cement-Stabilized Rammed Earth Blocks', J. Mater. Civ. Eng., vol. 27, no. 7, p.04014214, Jul. 2015, doi: 10.1061/(ASCE)MT. 1943-5533.0001170.
DOI: 10.1061/(asce)mt.1943-5533.0001170
Google Scholar
[13]
F. Ávila, E. Puertas, and R. Gallego, 'Characterization of the mechanical and physical properties of unstabilized rammed earth: A review', Construction and Building Materials, vol. 270, p.121435, Feb. 2021.
DOI: 10.1016/j.conbuildmat.2020.121435
Google Scholar
[14]
P. Walker and Standards Australia International, The Australian earth building handbook. Sydney: Standards Australia International, 2000.
Google Scholar
[15]
Ministère de l'Intérieur, Ministère de l'Equipment et du Transport, Ministère de l'Habitat, de l'Urbanisme et de la Politique de la ville, 'Règlement parasismique des constructions en terre', RPCTerre 2011, 2001.
DOI: 10.4000/books.insep.799
Google Scholar
[16]
Joint Australia/New Zealand Technical Committee - Standards New Zealand, 1998, 'NZS 4298 (1998): Materials and workmanship for earth buildings. Materials and workmanship for earth buildings. 1998.
Google Scholar
[17]
B. Manak, 'IS 13827: Improving earthquake resistance of earthen buildings-guidelines'. 1993.
Google Scholar
[18]
F.V. Riza, I.A. Rahman, and A.M.A. Zaidi, 'A brief review of compressed stabilized earth brick (CSEB)', in 2010 International Conference on Science and Social Research (CSSR 2010), IEEE, 2010, p.999–1004.
DOI: 10.1109/cssr.2010.5773936
Google Scholar
[19]
CRATerre-EAG : HOUBEN, Hugo ; CDI : BOUBEKEUR, S, 'Blocs de terre comprimée : Normes (Guide Série Technologies N° 11)'. 1998.
Google Scholar
[20]
M. Olivier, 'Le matériau terre Essai de compactage statique pour la fabrication de briques de terre compressées', Aug. 2023.
Google Scholar
[21]
J.-C. Morel, A. Pkla, and P. Walker, 'Compressive strength testing of compressed earth blocks', Construction and Building Materials, vol. 21, no. 2, p.303–309, Feb. 2007.
DOI: 10.1016/j.conbuildmat.2005.08.021
Google Scholar
[22]
AFNOR, 'NF P94-051 Soil: investigation and testing. Determination of Atterberg's limits. Liquid limit test using cassagrande apparatus. Plastic limit test on rolled thread.' 1993.
Google Scholar
[23]
AFNOR, 'NF P94-056 Soil: investigation and testing. Granulometric analysis. Dry sieving method after washing.' 1996.
Google Scholar
[24]
AFNOR, 'NF EN ISO 11272 Soil quality - Determination of dry bulk density'. 2014.
Google Scholar
[25]
AFNOR, 'NF EN 12390-4 Testing hardened concrete - Part 4: compressive strength - Specification for testing machines'. 2020.
DOI: 10.3403/01891186u
Google Scholar
[26]
M. F. Attom, 'The effect of compactive energy level on some soil properties', Applied Clay Science, vol. 12, no. 1–2, p.61–72, 1997.
DOI: 10.1016/s0169-1317(96)00037-3
Google Scholar
[27]
B. V. Venkatarama and K. S. Jagadish, 'The static compaction of soils.
Google Scholar
[28]
M. A. Mesbah, J.-C. Morel, and M. Olivier, 'Clayey soil behavior under static compaction test', Materials and Structures, vol. 32, p.687–694, Nov. 1999.
Google Scholar
[29]
A. Le Roux and A. Rivière, 'Traitement des sols argileux par la chaux', Bulletin de Liaison des Laboratoires des Ponts et Chaussées, Paris (40), p.59–95, 1969.
DOI: 10.1016/s0152-9668(02)80033-x
Google Scholar
[30]
S. M. Rao and P. Shivananda, 'Swelling behavior of lime-stabilized specimens after wetting and drying cycles', in Workshop in clay behavior: chemico-mechanical coupling from nanostructures to engineering applications, 2001.
Google Scholar
[31]
J. L. Eades and R. E. Grim, 'Reaction of hydrated lime with pure clay minerals in soil stabilization', Highway Research Board Bulletin, no. 262, 1960.
Google Scholar
[32]
F. Ávila, E. Puertas, and R. Gallego, 'Mechanical characterization of lime-stabilized rammed earth: Lime content and strength development', Construction and Building Materials, vol. 350, p.128871, Oct. 2022.
DOI: 10.1016/j.conbuildmat.2022.128871
Google Scholar
[33]
D. O. A. Osula, 'A comparative evaluation of cement and lime modification of laterite', Engineering geology, vol. 42, no. 1, p.71–81, 1996.
DOI: 10.1016/0013-7952(95)00067-4
Google Scholar
[34]
H. Brandl, 'Alteration of soil parameters by stabilization with lime', in Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Volume 3, Stockholm., 1981.
Google Scholar
[35]
G. H. Hilt and D. T. Davidson, 'Lime fixation in clayey soils', Highway Research Board Bulletin, no. 262, 1960.
Google Scholar
[36]
D. Deneele, O. Cuisinier, and J. C. Auriol, 'Etude microstructural du limon traité à la chaux'. Paris: LCPC, 2009.
Google Scholar
[37]
'Norme NF X35-109 - Évaluation de la manutention manuelle', Nawo Solution. Accessed: Aug. 05, 2023.
Google Scholar