[1]
E. E. Bugbee, A Textbook of Fire Assaying, in: John Wiley and Sons, Inc. London, 1922.
Google Scholar
[2]
Y. Hou, L. Gbologah, D. B. Asante, and P. S. Kwawukume, Compositional and Structural Deficiencies Causing Failure of Local Fire Assaying Crucibles in Ghana, International Journal of Engineering Research in Africa, 51 (2020) 57–70.
DOI: 10.4028/www.scientific.net/jera.51.57
Google Scholar
[3]
J. Shi, H. Xu, F. Shu, M. Ren, and Z. Lu, A PCA-Based Method for Remanufacturing Process Optimization from Sustainability Aspect, International Journal of Industrial Engineering: Theory, Applications and Practice, 30 (2023) 986-998.
Google Scholar
[4]
H. J. Kleebe, F. Siegelin, T. Straubinger, and G. Ziegler, Conversion of Al2O3-SiO2 Powder Mixtures to 3:2 Mullite Following the Stable or Metastable Phase Diagram, Journal of the European Ceramic Society, 21 (2001) 2521–2533
DOI: 10.1016/s0955-2219(01)00275-8
Google Scholar
[5]
P. Beeley, Foundry Technology, Second edi. Oxford: Butterworth-Heinemann, 2001.
Google Scholar
[6]
C. Sadik, I.-E. El Amrani, and A. Albizane, Recent Advances in Silica-Alumina Refractory: A Review, Journal of Asian Ceramic Societies, 2 (2014) 83–96.
DOI: 10.1016/j.jascer.2014.03.001
Google Scholar
[7]
F. Gonzales, C. L. Eggerding, and J. B. Niklewski, Process for Forming Mullite, U.S. Patent 4,272,500. (1981)
Google Scholar
[8]
D. Frulli, Production and Properties of Refractory Raw Materials Based on Andalusite and Mullite – Influence of Impurities in the Refractory Behavior, Materials Science 8 (2016) 1–4.
Google Scholar
[9]
K. G. Skinner, W. H. Cook, R. A. Potter, and H. Palmour, Effect of TiO2, Fe2O3, and Alkali on Mineralogical and Physical Properties of Mullite-Type and Mullite- Forming A12O3-SiO, Mixtures: I, Journal of the American Ceramic Society. 36 (1953) 349–356.
DOI: 10.1111/j.1151-2916.1953.tb12816.x
Google Scholar
[10]
J. Y. Appiah, Clay Samples from the Western Region of Ghana, X-Ray Analysis, Chemical Analysis, Bleaching Properties, and Suitability for Cement Clinker Production, Semantic Scholar, (2015)
Google Scholar
[11]
A. Yaya, E. K. Tiburu, M. E. Vickers, J. K. Efavi, B. Onwona-Agyeman, and K. M. Knowles, Characterisation and Identification of Local Kaolin Clay From Ghana: A Potential Material for Electroporcelain Insulator Fabrication, Applied Clay Science. 150 (2017) 125–130.
DOI: 10.1016/j.clay.2017.09.015
Google Scholar
[12]
E.K. Arthur and E. Gikunoo, Property Analysis of Thermal Insulating Materials Made From Ghanaian Anthill Clay Deposits, Cogent Engineering.7 (2020) no. 1.
DOI: 10.1080/23311916.2020.1827493
Google Scholar
[13]
R. B. Asamoah, E. Nyankson, E. Annan, B. Agyei-Tuffour, J. K. Efavi, K. Kan-Dapaah, V. A. Apalangya, L. N. W. Damoah, D. Dodoo-Arhin, E. K. Tiburu, S. K. Kwofie, B. Onwona-Agyeman and A. Yaya, Industrial Applications of Clay Materials From Ghana (A Review), Oriental Journal of Chemistry. 34 (2018) 1719–1734.
DOI: 10.13005/ojc/340403
Google Scholar
[14]
J.A.B.K. Ata, Preliminary Investigation of Ghanaian Clays for Decolorisation in the Vegetable Oil Industry, Ghana Journal of Agricultural Science, 11 (1978) 75–80.
Google Scholar
[15]
D. Dodoo-Arhin, D. S. Konadu, E. Annan, F. P. Buabeng, A. Yaya and B. Agyei-Tuffour, Fabrication and Characterisation of Ghanaian Bauxite Red Mud-Clay Composite Bricks for Construction Applications, American Journal of Materials Science, 3 (2013) 110–119.
DOI: 10.1016/j.cscm.2017.05.003
Google Scholar
[16]
E. Endene, S. S. R. Gidigasu, and S. K. Y. Gawu, Engineering Geological Evaluation of Mfensi and Afari Clay Deposits for Liner Application in Municipal Solid Waste Landfills, SN Applied Sciences, 2 (2020) 1–10.
DOI: 10.1007/s42452-020-03887-5
Google Scholar
[17]
P. S. Kwawukume, Material Specifications for the Production of High Density Refractory Brick with Locally Available High Alumino-Silicates, Journal of the University of Science and Technology, 19 (1999) 47–55.
Google Scholar
[18]
S. Obiri, D. Essumang, F.A. Armah, B. Ason, Geochemical Properties of Kaolin Deposits in the Central Region, Ghana : A Multivariate Statistical Approach, Research Square (2022)1-15.
DOI: 10.21203/rs.3.rs-1850542/v1
Google Scholar
[19]
T.A. Tagbor, K.A. Boakye, J. Sarfo-Ansah, and E. Atiemo, "A Study of the Pozzolanic Properties of Anfoega Kaolin," International Journal of Engineering Research and Applications. 5 (2015) 28–33.
Google Scholar
[20]
D. K. Smith, Nomenclature of the Silica Minerals and Bibliography, Power Diffraction. 13 (1998) 2–19.
Google Scholar
[21]
A.O. Surendranathan, An Introduction to Ceramics and Refractories. CRC Press. 2014.
DOI: 10.1201/b17811
Google Scholar
[22]
S.L. Msibi, Effect of Recycled Bauxite Grog Addition on Andalusite-Containing Refractory Castables for Tundish Applications, Master Thesis, (2018)
Google Scholar
[23]
A.R. Chesti, Refractories: Manufacture, Properties and Applications. Prentice-Hall of India, 1986.
Google Scholar
[24]
M.A.G. Elngar, F.M. Mohamed, S. A. H. El-Bohy, C. M. Sharaby, and M. E.-M. H. Shalabi, Factors Affected the Performance of the Fire Clay Refractory Bricks, Górnictwo i Geoinżynieria, 4 (2014).
Google Scholar
[25]
C. M. F. Vieira, J. Alexandre, and S. N. Monteiro, Effect of the Particle Size of the Grog on the Properties and Microstructure of Bricks, Materials science forum, 530 (2006) 438–443.
DOI: 10.4028/www.scientific.net/msf.530-531.438
Google Scholar
[26]
C. Tang, K. Li, W. Ni, and D. Fan, Recovering Iron from Iron Ore Tailings and Preparing Concrete Composite Admixtures, Minerals, 9 (2019) 1–14, 2019.
DOI: 10.3390/min9040232
Google Scholar
[27]
C. Sylwan, S. Reichardt, and T. Eriksson, Thermal Shock Resistance and Effects of Quenching on Two Max Phase Bulk Materials, Materials Science, Semantic Scholar, (1996).
Google Scholar
[28]
K. Li, D. Wang, H. Chen, and L. Guo, Normalized Evaluation of Thermal Shock Resistance for Ceramic Materials, Journal of Advanced Ceramics, 3 (2014) 250–258.
DOI: 10.1007/s40145-014-0118-9
Google Scholar
[29]
G. Xu, Q. Dong, X. Zhang, and M. Li, A Novel Methodology for Process Parameter Optimization Based on Support Vector Data Description, International Journal of Industrial Engineering: Theory, Applications and Practice., 27 (2020) no. 5.
Google Scholar
[30]
B. Kanka and H. Schneider, Sintering Mechanisms and Microstructural Development of Coprecipitated Mullite, Journal of Materials Science, 29(1994) 1239–1249.
DOI: 10.1007/bf00975071
Google Scholar
[31]
S. Ashlock and A. Scheer, The Effect of Iron Oxide Impurities on the Hot Properties of Mullite, Proceedings UNITECR 2022 Congress. 17th Biennial Worldwide Congres on Refractories, 2022.
Google Scholar
[32]
S. Lee, Y. J. Kim, and H. S. Moon, Phase Transformation Sequence from Kaolinite to Mullite Investigated by an Energy-Filtering Transmission Electron Microscope, Journal of the American Ceramic Society. 82, 10 (1999) 2841–2848.
DOI: 10.1111/j.1151-2916.1999.tb02165.x
Google Scholar
[33]
I. M. Bakr, Densification Behavior, Phase Transformations, Microstructure and Mechanical Properties of Fired Egyptian Kaolins, Applied. Clay Science. 52, (2011) 333–337.
DOI: 10.1016/j.clay.2011.03.002
Google Scholar
[34]
A. Ghorbel, M. Fourati, and J. Bouaziz, Microstructural Evolution and Phase Transformation of Different Sintered Kaolins Powder Compacts, Materials Chemistry and Physics. 112 (2008) 876–885.
DOI: 10.1016/j.matchemphys.2008.06.047
Google Scholar
[35]
R.M. German, P. Suri, and S.J. Park, Review: Liquid Phase Sintering, Journal of Materials Science, 44(2009) 1–39.
Google Scholar
[36]
Information on https://www.britannica.com/science/quartz (accessed on May 15, 2023).
Google Scholar
[37]
E. Ringdalen, Changes in Quartz During Heating and the Possible Effects on Si Production, 67(2015) 484–492.
DOI: 10.1007/s11837-014-1149-y
Google Scholar
[38]
A. Gualtieri and M. Bertolani, Mullite and Cristobalite Formation in Fired Products Starting From Halloysitic Clay, Applied Clay Science, 7 (1992) 251–262.
DOI: 10.1016/0169-1317(92)90013-d
Google Scholar
[39]
N. Fosu, B. Owusu, and J. R. Dankwah, Carbothermal Upgrading of the Awaso Bauxite Ore using Sawdust and Coconut Shells as Reductant , Ghana Mining Journal. 15(2016) 58–64.
DOI: 10.4314/gm.v16i2.8
Google Scholar
[40]
W. Wang, D. Weng, and X. Wu, Thermal Behavior of Zirconia-doped Mullite Gel Fibers, Progress in Natural Science: Materials International. 22 (2012) 213–218.
DOI: 10.1016/j.pnsc.2012.04.002
Google Scholar
[41]
X. Li, S. Niu, D. Wang, J. Li, Q. Jiao, X. Guo, X. Xu, Microstructure and Crystallization Kinetics of Silica-Based Ceramic Cores with Enhanced High-Temperature Property, Materials (Basel) 16 (2023) 1–12.
DOI: 10.3390/ma16020606
Google Scholar
[42]
A. K. Chakraborty, Mullite Phase, in: Phase Transformation of Kaolinite Clay, Springer, 2014, pp.235-272.
DOI: 10.1007/978-81-322-1154-9_21
Google Scholar
[43]
R.C. Breneman and J.W. Halloran, Effect of Cristobalite on the Strength of Sintered Fused Silica Above and Below the Cristobalite Transformation, Journal of American Ceramic Society, 98 (2015) 1611–1617.
DOI: 10.1111/jace.13505
Google Scholar
[44]
N. Traon, T. Tonnesen, and R. Telle, Estimation of Damage in Refractory Materials after Progressive Thermal Shocks with Resonant Frequency Damping Analysis, Journal of Ceramic Science and Technology, 172 (2016) 165–172.
Google Scholar
[45]
C. Gupta, Fuels, in: Furnaces and Refractories. PHI Learning, 1977.
Google Scholar
[46]
Y. Luo, H. Gu, M. Zhang, A. Huang, H. Li, C. Yu, T. Li, P. Yan., Research on Thermal Shock Resistance of Porous Refractory Material by Strain-Life Fatigue Approach, Ceramics International. 46 (2020) 14884–14893.
DOI: 10.1016/j.ceramint.2020.03.015
Google Scholar