Enhancing Gold Assaying Crucibles in Ghana: Optimizing Fosu Clay Grog with Sintered Mullite for Improved Performance

Article Preview

Abstract:

Due to material and structural issues, fire-assaying crucibles used for analyzing precious metals in ores have encountered challenges related to poor thermal cycling in Ghana’s sub-Saharan region. This study aimed to enhance the crucibles by analyzing aluminosilicate minerals' multiphase development using X-ray diffraction and understanding the effects of composition determined by X-ray fluorescence on thermal behavior and water absorption observed through optical microscopy. The improved crucible design exhibited enhanced thermal cycling stability and lower permeability to the assay charge. Analysis showed that Fosu Clay (FC) demonstrated promise with a favorable Al2O3:SiO2 ratio and low impurities; mullite was identified as the primary phase formed at high temperatures, with quartz and cristobalite also present. Introducing 6% CSM dopant to FC increased the mullite content while supporting the transformation from quartz to cristobalite. The optimal crucible sample included coarse and fine-doped grog with an FC-clay binder, demonstrating excellent thermal stability, adequate porosity, and water absorption. Adjusting the percentage of doped grog further increased mullite content while reducing silica content; this suggests that locally produced improved crucibles are feasible through sintering commercial clay with mullite doping and precise composition adjustments.

You might also be interested in these eBooks

Info:

Pages:

53-68

Citation:

Online since:

July 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. E. Bugbee, A Textbook of Fire Assaying, in: John Wiley and Sons, Inc. London, 1922.

Google Scholar

[2] Y. Hou, L. Gbologah, D. B. Asante, and P. S. Kwawukume, Compositional and Structural Deficiencies Causing Failure of Local Fire Assaying Crucibles in Ghana, International Journal of Engineering Research in Africa, 51 (2020) 57–70.

DOI: 10.4028/www.scientific.net/jera.51.57

Google Scholar

[3] J. Shi, H. Xu, F. Shu, M. Ren, and Z. Lu, A PCA-Based Method for Remanufacturing Process Optimization from Sustainability Aspect, International Journal of Industrial Engineering: Theory, Applications and Practice, 30 (2023) 986-998.

Google Scholar

[4] H. J. Kleebe, F. Siegelin, T. Straubinger, and G. Ziegler, Conversion of Al2O3-SiO2 Powder Mixtures to 3:2 Mullite Following the Stable or Metastable Phase Diagram, Journal of the European Ceramic Society, 21 (2001) 2521–2533

DOI: 10.1016/s0955-2219(01)00275-8

Google Scholar

[5] P. Beeley, Foundry Technology, Second edi. Oxford: Butterworth-Heinemann, 2001.

Google Scholar

[6] C. Sadik, I.-E. El Amrani, and A. Albizane, Recent Advances in Silica-Alumina Refractory: A Review, Journal of Asian Ceramic Societies, 2 (2014) 83–96.

DOI: 10.1016/j.jascer.2014.03.001

Google Scholar

[7] F. Gonzales, C. L. Eggerding, and J. B. Niklewski, Process for Forming Mullite, U.S. Patent 4,272,500. (1981)

Google Scholar

[8] D. Frulli, Production and Properties of Refractory Raw Materials Based on Andalusite and Mullite – Influence of Impurities in the Refractory Behavior, Materials Science 8 (2016) 1–4.

Google Scholar

[9] K. G. Skinner, W. H. Cook, R. A. Potter, and H. Palmour, Effect of TiO2, Fe2O3, and Alkali on Mineralogical and Physical Properties of Mullite-Type and Mullite- Forming A12O3-SiO, Mixtures: I, Journal of the American Ceramic Society. 36 (1953) 349–356.

DOI: 10.1111/j.1151-2916.1953.tb12816.x

Google Scholar

[10] J. Y. Appiah, Clay Samples from the Western Region of Ghana, X-Ray Analysis, Chemical Analysis, Bleaching Properties, and Suitability for Cement Clinker Production, Semantic Scholar, (2015)

Google Scholar

[11] A. Yaya, E. K. Tiburu, M. E. Vickers, J. K. Efavi, B. Onwona-Agyeman, and K. M. Knowles, Characterisation and Identification of Local Kaolin Clay From Ghana: A Potential Material for Electroporcelain Insulator Fabrication, Applied Clay Science. 150 (2017) 125–130.

DOI: 10.1016/j.clay.2017.09.015

Google Scholar

[12] E.K. Arthur and E. Gikunoo, Property Analysis of Thermal Insulating Materials Made From Ghanaian Anthill Clay Deposits, Cogent Engineering.7 (2020) no. 1.

DOI: 10.1080/23311916.2020.1827493

Google Scholar

[13] R. B. Asamoah, E. Nyankson, E. Annan, B. Agyei-Tuffour, J. K. Efavi, K. Kan-Dapaah, V. A. Apalangya, L. N. W. Damoah, D. Dodoo-Arhin, E. K. Tiburu, S. K. Kwofie, B. Onwona-Agyeman and A. Yaya, Industrial Applications of Clay Materials From Ghana (A Review), Oriental Journal of Chemistry. 34 (2018) 1719–1734.

DOI: 10.13005/ojc/340403

Google Scholar

[14] J.A.B.K. Ata, Preliminary Investigation of Ghanaian Clays for Decolorisation in the Vegetable Oil Industry, Ghana Journal of Agricultural Science, 11 (1978) 75–80.

Google Scholar

[15] D. Dodoo-Arhin, D. S. Konadu, E. Annan, F. P. Buabeng, A. Yaya and B. Agyei-Tuffour, Fabrication and Characterisation of Ghanaian Bauxite Red Mud-Clay Composite Bricks for Construction Applications, American Journal of Materials Science, 3 (2013) 110–119.

DOI: 10.1016/j.cscm.2017.05.003

Google Scholar

[16] E. Endene, S. S. R. Gidigasu, and S. K. Y. Gawu, Engineering Geological Evaluation of Mfensi and Afari Clay Deposits for Liner Application in Municipal Solid Waste Landfills, SN Applied Sciences, 2 (2020) 1–10.

DOI: 10.1007/s42452-020-03887-5

Google Scholar

[17] P. S. Kwawukume, Material Specifications for the Production of High Density Refractory Brick with Locally Available High Alumino-Silicates, Journal of the University of Science and Technology, 19 (1999) 47–55.

Google Scholar

[18] S. Obiri, D. Essumang, F.A. Armah, B. Ason, Geochemical Properties of Kaolin Deposits in the Central Region, Ghana : A Multivariate Statistical Approach, Research Square (2022)1-15.

DOI: 10.21203/rs.3.rs-1850542/v1

Google Scholar

[19] T.A. Tagbor, K.A. Boakye, J. Sarfo-Ansah, and E. Atiemo, "A Study of the Pozzolanic Properties of Anfoega Kaolin," International Journal of Engineering Research and Applications. 5 (2015) 28–33.

Google Scholar

[20] D. K. Smith, Nomenclature of the Silica Minerals and Bibliography, Power Diffraction. 13 (1998) 2–19.

Google Scholar

[21] A.O. Surendranathan, An Introduction to Ceramics and Refractories. CRC Press. 2014.

DOI: 10.1201/b17811

Google Scholar

[22] S.L. Msibi, Effect of Recycled Bauxite Grog Addition on Andalusite-Containing Refractory Castables for Tundish Applications, Master Thesis, (2018)

Google Scholar

[23] A.R. Chesti, Refractories: Manufacture, Properties and Applications. Prentice-Hall of India, 1986.

Google Scholar

[24] M.A.G. Elngar, F.M. Mohamed, S. A. H. El-Bohy, C. M. Sharaby, and M. E.-M. H. Shalabi, Factors Affected the Performance of the Fire Clay Refractory Bricks, Górnictwo i Geoinżynieria, 4 (2014).

Google Scholar

[25] C. M. F. Vieira, J. Alexandre, and S. N. Monteiro, Effect of the Particle Size of the Grog on the Properties and Microstructure of Bricks, Materials science forum, 530 (2006) 438–443.

DOI: 10.4028/www.scientific.net/msf.530-531.438

Google Scholar

[26] C. Tang, K. Li, W. Ni, and D. Fan, Recovering Iron from Iron Ore Tailings and Preparing Concrete Composite Admixtures, Minerals, 9 (2019) 1–14, 2019.

DOI: 10.3390/min9040232

Google Scholar

[27] C. Sylwan, S. Reichardt, and T. Eriksson, Thermal Shock Resistance and Effects of Quenching on Two Max Phase Bulk Materials, Materials Science, Semantic Scholar, (1996).

Google Scholar

[28] K. Li, D. Wang, H. Chen, and L. Guo, Normalized Evaluation of Thermal Shock Resistance for Ceramic Materials, Journal of Advanced Ceramics, 3 (2014) 250–258.

DOI: 10.1007/s40145-014-0118-9

Google Scholar

[29] G. Xu, Q. Dong, X. Zhang, and M. Li, A Novel Methodology for Process Parameter Optimization Based on Support Vector Data Description, International Journal of Industrial Engineering: Theory, Applications and Practice., 27 (2020) no. 5.

Google Scholar

[30] B. Kanka and H. Schneider, Sintering Mechanisms and Microstructural Development of Coprecipitated Mullite, Journal of Materials Science, 29(1994) 1239–1249.

DOI: 10.1007/bf00975071

Google Scholar

[31] S. Ashlock and A. Scheer, The Effect of Iron Oxide Impurities on the Hot Properties of Mullite, Proceedings UNITECR 2022 Congress. 17th Biennial Worldwide Congres on Refractories, 2022.

Google Scholar

[32] S. Lee, Y. J. Kim, and H. S. Moon, Phase Transformation Sequence from Kaolinite to Mullite Investigated by an Energy-Filtering Transmission Electron Microscope, Journal of the American Ceramic Society. 82, 10 (1999) 2841–2848.

DOI: 10.1111/j.1151-2916.1999.tb02165.x

Google Scholar

[33] I. M. Bakr, Densification Behavior, Phase Transformations, Microstructure and Mechanical Properties of Fired Egyptian Kaolins, Applied. Clay Science. 52, (2011) 333–337.

DOI: 10.1016/j.clay.2011.03.002

Google Scholar

[34] A. Ghorbel, M. Fourati, and J. Bouaziz, Microstructural Evolution and Phase Transformation of Different Sintered Kaolins Powder Compacts, Materials Chemistry and Physics. 112 (2008) 876–885.

DOI: 10.1016/j.matchemphys.2008.06.047

Google Scholar

[35] R.M. German, P. Suri, and S.J. Park, Review: Liquid Phase Sintering, Journal of Materials Science, 44(2009) 1–39.

Google Scholar

[36] Information on https://www.britannica.com/science/quartz (accessed on May 15, 2023).

Google Scholar

[37] E. Ringdalen, Changes in Quartz During Heating and the Possible Effects on Si Production, 67(2015) 484–492.

DOI: 10.1007/s11837-014-1149-y

Google Scholar

[38] A. Gualtieri and M. Bertolani, Mullite and Cristobalite Formation in Fired Products Starting From Halloysitic Clay, Applied Clay Science, 7 (1992) 251–262.

DOI: 10.1016/0169-1317(92)90013-d

Google Scholar

[39] N. Fosu, B. Owusu, and J. R. Dankwah, Carbothermal Upgrading of the Awaso Bauxite Ore using Sawdust and Coconut Shells as Reductant , Ghana Mining Journal. 15(2016) 58–64.

DOI: 10.4314/gm.v16i2.8

Google Scholar

[40] W. Wang, D. Weng, and X. Wu, Thermal Behavior of Zirconia-doped Mullite Gel Fibers, Progress in Natural Science: Materials International. 22 (2012) 213–218.

DOI: 10.1016/j.pnsc.2012.04.002

Google Scholar

[41] X. Li, S. Niu, D. Wang, J. Li, Q. Jiao, X. Guo, X. Xu, Microstructure and Crystallization Kinetics of Silica-Based Ceramic Cores with Enhanced High-Temperature Property, Materials (Basel) 16 (2023) 1–12.

DOI: 10.3390/ma16020606

Google Scholar

[42] A. K. Chakraborty, Mullite Phase, in: Phase Transformation of Kaolinite Clay, Springer, 2014, pp.235-272.

DOI: 10.1007/978-81-322-1154-9_21

Google Scholar

[43] R.C. Breneman and J.W. Halloran, Effect of Cristobalite on the Strength of Sintered Fused Silica Above and Below the Cristobalite Transformation, Journal of American Ceramic Society, 98 (2015) 1611–1617.

DOI: 10.1111/jace.13505

Google Scholar

[44] N. Traon, T. Tonnesen, and R. Telle, Estimation of Damage in Refractory Materials after Progressive Thermal Shocks with Resonant Frequency Damping Analysis, Journal of Ceramic Science and Technology, 172 (2016) 165–172.

Google Scholar

[45] C. Gupta, Fuels, in: Furnaces and Refractories. PHI Learning, 1977.

Google Scholar

[46] Y. Luo, H. Gu, M. Zhang, A. Huang, H. Li, C. Yu, T. Li, P. Yan., Research on Thermal Shock Resistance of Porous Refractory Material by Strain-Life Fatigue Approach, Ceramics International. 46 (2020) 14884–14893.

DOI: 10.1016/j.ceramint.2020.03.015

Google Scholar