An Analytic Model for the 2-DEG Density Current-Voltage Characteristic for AlGaN/GaN HEMTs

Article Preview

Abstract:

Higher frequency hetero-junction transistors called High Electron Mobility Transistors (HEMTs) are employed in a number of high-power applications, including radiofrequency, radiation, space exploration, and others. When stressed between the junction of a broad bandgap and low bandgap material, AlGaN/GaN HEMTs create Two-Dimensional Electron Gas (2DEG).To determine the eventual number of electrons in the quantum well, it is necessary to assess the charge density generated by the polarization existing in the 2DEG region. In this paper, two-dimensional electron gas (2-DEG) sheet carrier concentration estimate model takes into consideration the substantially dominating total polarization. In order to regulate the impact of these characteristics on the device performance, discussion has focused on the current-voltage characteristic, which illustrates how the drain-source current varies in response to the gate voltage modulation. Our study also aims at how the two-dimensional electron gas density depends on the aluminum molar percentage and AlGaN layer thickness.

You might also be interested in these eBooks

Info:

Pages:

69-78

Citation:

Online since:

July 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Meneghini, C. De Santi, I. Abid, M. Buffolo, M. Cioni, R. A. Khadar, L.Nela, N. Zagni, A. Chini, F. Medjdoub et al., "GaN-based power devices: Physics, reliability, and perspectives," J. Appl. Phys. 130 (2021) 181101.

DOI: 10.1063/5.0061354

Google Scholar

[2] T. Tanaka, K. Takano, T. Mishima, Y. Kohji, Y. Otoki and T. Meguro, "GaN Epitaxial Wafers for High Break-down Voltage RF Transistor Applications," Hitachi Cable Review, 24 (2005) 11-14.

Google Scholar

[3] Saidi, I., Gassoumi, M., Maaref, H., Mejri, H., & Gaquière, C. Self-heating and trapping effects in AlGaN/GaN heterojunction field-effect transistors. Journal of Applied Physics, 106 (5) (2009) 054511.

DOI: 10.1063/1.3202317

Google Scholar

[4] Tijent, F.Z., Faqir, M., Voss, P.L. et al. An analytical model to calculate the current–voltage characteristics of AlGaN/GaN HEMTs. J Comput Electron 21 (2022) 644–653.

DOI: 10.1007/s10825-022-01871-3

Google Scholar

[5] Y. Shen, H.-A. Yang, and B.-Y. Cao, "Near-junction phonon thermal spreading in GaN HEMTs: A comparative study of simulation techniques by full-band phonon Monte Carlo method," International Journal of Heat and Mass Transfer, 211 (2023) 124284.

DOI: 10.1016/j.ijheatmasstransfer.2023.124284

Google Scholar

[6] Sten Heikman, Stacia Keller, Yuan Wu, James S. Speck, Steven P. DenBaars, and Umesh K. Mishra, "Polarization effects in AlGa /Ga and Ga /AlGa /Ga heterostructures" Journal of Applied Physics, 93 (2003) 10114.

DOI: 10.1063/1.1577222

Google Scholar

[7] D.-S. Tang and B.-Y. Cao, "Phonon thermal transport and its tunability in GaN for near-junction thermal management of electronics: A review," International Journal of Heat and Mass Transfer, 200 (2023) 123497.

DOI: 10.1016/j.ijheatmasstransfer.2022.123497

Google Scholar

[8] P. Gangwani, S. Pandey, S. Haldar, M. Gupta and R.S. Gupta, "Polarization Dependent Analysis of AlGaN/GaN HEMT for High Power Applications," Solid State Electronics, 51, 1 (2007) 130-135.

DOI: 10.1016/j.sse.2006.11.002

Google Scholar

[9] M. Haziq, S. Falina, A.A. Manaf, H. Kawarada, and M. Syamsul, "Challenges and opportunities for high-power and high-frequency AlGaN/GaN high-electron-mobility transistor (HEMT) applications: A review," Micromachines, 13-12 (2022) 2133.

DOI: 10.3390/mi13122133

Google Scholar

[10] X. L. Wang, T. S. Shen, H. L. Xiao, C. M. Wang, G. X. Hu, W. J. Luo, J. Tang, L. C. Guo and J. M. Li, "High-Performences 2 mm Gate width GaN HEMTs on 6H-SiC with Output Power of 22.4 W at 8 GHz," Solid-State Electron, 58, 6 (2008) 926-929.

DOI: 10.1016/j.sse.2007.12.014

Google Scholar

[11] Wang, W., Chen, J., Lundh, J. S., Shervin, S., Oh, S. K., Pouladi, S., Rao, Z., Kim, J. Y., Kwon, M., Choi, S., Ryou, J.-H. Modulation of the two-dimensional electron gas channel in flexible AlGaN/GaN high-electron-mobility transistors by mechanical bending. Applied Physics Letters, 116, 12 (2020) 123501.

DOI: 10.1063/1.5142546

Google Scholar

[12] D. Ducatteau, A. Minko, V. Hoël, E. Morvan, E. Delos, B. Grimbert, H. Lahreche, P. Bove, C.Gaquière, J. C. De Jaeger and S. Delage, "Output Power Density of 5.1/mm at 18 GHz with an AlGaN/GaN HEMT on Si Substrate," IEEE Electron Device Letters, 27,1 (2006) 7-9.

DOI: 10.1109/led.2005.860385

Google Scholar

[13] I. Saidi, Y. Cordier, M. Chmielowska, H. Mejri and H. Maaref, "Thermal Effects in AlGaN/GaN/Si High Electron Mobility Transistors," Solid-State Electronics, 61, 1(2011) 1-6.

DOI: 10.1016/j.sse.2011.02.008

Google Scholar

[14] M. K. Chattopadhyay and S. Tokekar, "Thermal Model for dc Characteristics of Algan/Gan Hemts Including Self-Heating Effect and Non-Linear Polarization," Micro- electronics Journal, 39, 10 (2008) 1181-1188.

DOI: 10.1016/j.mejo.2008.01.043

Google Scholar

[15] R. K. Tyagi, A. Ahlawat, M. Pandey and S. Pandey, "An Analytical Two-Dimensional Model for AlGaN/GaN HEMT with Polarization Effects for High Power Applications," Microelectronics Journal, 38, 8-9 (2007) 877-883.

DOI: 10.1016/j.mejo.2007.07.003

Google Scholar

[16] E.J. Miller, "Trap Characterization by Gate-Drain Con- ductance and Capacitance Dispersion Studies of an AlGaN/GaN Heterostructure Field Effect Transistor," Journal of Applied Physics, 87, 11 (2000) 8070- 8073.

DOI: 10.1063/1.373499

Google Scholar

[17] B. Padmanabhan, D. Vasileska, and S. Goodnick, "Reliability concerns due to self-heating effects in GaN HEMTs," J. Integr. Circuits Syst. 8 (2020) 78–82.

DOI: 10.29292/jics.v8i2.376

Google Scholar

[18] S. Sen, M. K. Pandey and R. S. Gupta, "Two-dimensional C-V model of AlGaAs/GaAs modulation doped field effect transistor (MODFET) for high frequency applications," in IEEE Transactions on Electron Devices, 46, 9 (1999) 1818-1823.

DOI: 10.1109/16.784179

Google Scholar

[19] Rashmi, Kranti Abhinav, Haldar S, Gupta RS. An accurate charge control model for Spontaneous and piezoelectric polarization dependent two dimensional electron gas Sheet charge density of latticemismatched AlGaN/GaN HEMTs.Solid State Electron, 46 (2002) 621– 30.

DOI: 10.1016/s0038-1101(01)00332-x

Google Scholar

[20] Ambacher, O., et al.: Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undopedand doped AlGaN/GaN heterostructures. J. Appl. Phys. 87 (2000) 334–344.

DOI: 10.1063/1.371866

Google Scholar

[21] Jogai, B., Albrecht, J., Pan, E.: Effect of electromechanical coupling on the strain in AlGaN/GaN heterojunction fieldeffect transistors. J. Appl. Phys. 94 (2003) 3984–3989.

DOI: 10.1063/1.1603953

Google Scholar

[22] Ruden PP, Albrecht JD, Sutandi A, Binari SC, Anastasiou KI, Ancona MG, et al. Extrinsic performance limitationsof AlGaN/GaN heterostructure field effect transistors. MRS Internet J Nitride Semicond Res 1999; 4S1 (G6.35).

DOI: 10.1557/s1092578300003240

Google Scholar

[23] Rashmi, Kranti, A., Haldar, S., & Gupta, R. S. An accurate charge control model for spontaneous and piezoelectric polarization dependent two-dimensional electron gas sheet charge density of lattice-mismatched AlGaN/GaN HEMTs. Solid-State Electronics, 46 (5) (2002) 621–630.

DOI: 10.1016/s0038-1101(01)00332-x

Google Scholar

[24] X. Cheng, M. Li and Y. Wang, "An Analytical Model for Current-Voltage Characteristics of AlGaN/GaN HEMTs in Presence of Self-Heating Effect," Solid-State Electronics, 54, 1 (2010) 42-47.

DOI: 10.1016/j.sse.2009.09.026

Google Scholar

[25] E. W. Faraclas and A. F. M. Anwar, "AlGaN/GaN HEMTs: Experiment and Simulation of DC Characteristics," Solid-State Electronics, 50, 6 (2006) 1051-1056.

DOI: 10.1016/j.sse.2006.04.014

Google Scholar

[26] Muhammad Usman, Tariq Jamil, Muhammad Aamir, Abdullrahman Abdullah Alyemeni, "Performance enhancement with thin p-AlInN electron-blocking layer in ultraviolet light- emitting diodes", Optical Engineering, 62 (2023) 01.

DOI: 10.1117/1.oe.62.1.017106

Google Scholar