Prediction of Flexural Properties of Additively Manufactured Short Fiber-Reinforced Polymer Composite Parts

Article Preview

Abstract:

Fibre-reinforced polymer (FRP) composites have many desirable properties such as high corrosion resistance and a high strength-to-weight ratio. They can also be easily optimised to suit different loading requirements. To produce functional components through 3D printing using FRPs, it is important to optimize the printing process parameters and to predict the mechanical properties of the printed components. The mathematical predictive approach is preferred over experiments it is flexible, fast and not as costly as experiments. In this work, a coupled finite element model for predicting flexural strength properties of additively manufactured parts is developed. The model takes into account the structure, material microstructure, and fused filament fabrication (FFF) process parameters in predicting the flexural strength of parts. The validity of the model is tested using a standard flexural bending specimen and an ankle-foot orthosis (AFO) prototype which are fabricated using short carbon fibre-reinforced polyamide 12 (PA12-CF) filament. The validity of the coupled analysis model was tested by comparing the model predictions of flexural strength with experimental results. The results provide a good prediction of part performance.

You might also be interested in these eBooks

Info:

Pages:

19-35

Citation:

Online since:

July 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.K. Chawla, Composite Materials, Third Edit., Springer Science+Business Media New York, 2012.

Google Scholar

[2] S. M. F. Kabir, K. Mathur, and A. F. M. Seyam, A critical review on 3D printed continuous fiber-reinforced composites: History, mechanism, materials and properties, Compos Struct, 232, (2020), 111476.

DOI: 10.1016/j.compstruct.2019.111476

Google Scholar

[3] N. Mohan, P. Senthil, S. Vinodh, and N. Jayanth, A review on composite materials and process parameters optimisation for the fused deposition modelling process, Virtual Phys Prototyp, 12(1), (2017), 47–59.

DOI: 10.1080/17452759.2016.1274490

Google Scholar

[4] L. W. Kariuki, B. W. Ikua, S. K. Karanja, S. P. Ng'ang'a, and H. Zeidler, Fused filament fabrication of carbon fiber-reinforced polymer composite: Effect of process parameters on flexural properties, Engineering Reports, (2023), 12807.

DOI: 10.1002/eng2.12807

Google Scholar

[5] W. Zhang et al., Characterization of residual stress and deformation in additively manufactured ABS polymer and composite specimens, Compos Sci Technol, 150, (2017), 102–110.

DOI: 10.1016/j.compscitech.2017.07.017

Google Scholar

[6] C. Casavola, A. Cazzato, V. Moramarco, and G. Pappalettera, Residual stress measurement in Fused Deposition Modelling parts, Polym Test, 58, (2017), 249–255.

DOI: 10.1016/j.polymertesting.2017.01.003

Google Scholar

[7] H. Alzyod and P. Ficzere, Prediction of the influence of printing parameters on the residual stress using numerical simulation, System Safety: Human - Technical Facility - Environment, 4(1), (2022), 150–156.

DOI: 10.2478/czoto-2022-0015

Google Scholar

[8] S. Wang, Y. Ma, Z. Deng, S. Zhang, and J. Cai, Effects of fused deposition modeling process parameters on tensile, dynamic mechanical properties of 3D printed polylactic acid materials, Polym Test, 86(1), (2020), 106483.

DOI: 10.1016/j.polymertesting.2020.106483

Google Scholar

[9] A. M. Oviedo, A. H. Puente, C. Bernal, and E. Pérez, Mechanical evaluation of polymeric filaments and their corresponding 3D printed samples, Polym Test, 88(1), (2020).

DOI: 10.1016/j.polymertesting.2020.106561

Google Scholar

[10] S. Ding, B. Zou, P. Wang, and H. Ding, Effects of nozzle temperature and building orientation on mechanical properties and microstructure of PEEK and PEI printed by 3D-FDM, Polym Test, 78(6), (2019), 105948.

DOI: 10.1016/j.polymertesting.2019.105948

Google Scholar

[11] D. Croccolo, M. De Agostinis, and G. Olmi, Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30, Comput Mater Sci, 79, (2013), 506–518.

DOI: 10.1016/j.commatsci.2013.06.041

Google Scholar

[12] Y. Zhou, T. Nyberg, G. Xiong, and D. Liu, Temperature Analysis in the Fused Deposition Modeling Process, Proceedings - 2016 3rd International Conference on Information Science and Control Engineering, (2016), 678–682.

DOI: 10.1109/ICISCE.2016.150

Google Scholar

[13] S. F. Costa, F. M. Duarte, and J. A. Covas, Thermal conditions affecting heat transfer in FDM/FFE: a contribution towards the numerical modelling of the process, Virtual Phys Prototyp, 10(1), (2015), 35–46.

DOI: 10.1080/17452759.2014.984042

Google Scholar

[14] A. Cattenone, S. Morganti, G. Alaimo, and F. Auricchio, Finite element analysis of additive manufacturing based on fused deposition modeling: Distortions prediction and comparison with experimental data, Journal of Manufacturing Science and Engineering, Transactions of the ASME, 141(1), (2019).

DOI: 10.1115/1.4041626

Google Scholar

[15] H. Xia, J. Lu, S. Dabiri, and G. Tryggvason, Fully resolved numerical simulations of fused deposition modeling. Part I: fluid flow, Rapid Prototyp J, 24(2), (2018), 463–476.

DOI: 10.1108/RPJ-12-2016-0217

Google Scholar

[16] N. H. Huu, D. H. V. Ho, T. N. Huu, H. B. Trong, and T. H. T. Thi, Numerical simulation of flow behaviour of PLA and PLA-Copper during fused deposition modeling process, Materials Science Forum, 1064(1), (2022), 53–63.

DOI: 10.4028/p-uklbcx

Google Scholar

[17] W. Associates and A. International, Executive summary Wohlers report 2023, (2023).

Google Scholar

[18] S. Ghosh, Predictive modeling of solidification during laser additive manufacturing of nickel superalloys: Recent developments, future directions, Mater Res Express, 5(1), (2018).

DOI: 10.1088/2053-1591/aaa04c

Google Scholar

[19] H. Alzyod and P. Ficzere, Material-Dependent Effect of Common Printing Parameters on Residual Stress and Warpage Deformation in 3D Printing: A Comprehensive Finite Element Analysis Study, Polymers (Basel), 15(13), (2023), 2893.

DOI: 10.3390/polym15132893

Google Scholar

[20] F. S. Shahar, M. T. Hameed Sultan, A. U. M. Shah, and S. N. Azrie Safri, A comparative analysis between conventional manufacturing and additive manufacturing of ankle-foot orthosis, Applied Science and Engineering Progress, 13(2), (2020), 96–103.

DOI: 10.14416/j.asep.2020.03.002

Google Scholar

[21] I. Doghri and L. Adam, Integrated Computational Materials Engineering (ICME), (2020).

Google Scholar

[22] Polymaker, PolyMide TM PA12-CF Industrial, (2021).

Google Scholar

[23] T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica, 21, (1973), 571–574.

DOI: 10.1016/0001-6160(73)90064-3

Google Scholar

[24] W. Voigt, Uber die beziehung zwischen den beiden elastizitatskonstanten isotroper korper, Ann Phys, 274(12), (1889), 573–587.

DOI: 10.1002/andp.18892741206

Google Scholar

[25] ASTM INTERNATIONAL, Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM D790-17, (2017).

DOI: 10.1520/d0790-15

Google Scholar

[26] International Committee of the Red Cross's Physical Rehabilitation Programme, Manufacturing Guidelines Ankle-Foot Orthosis, (2010).

Google Scholar

[27] M. Heidari-Rarani, N. Ezati, P. Sadeghi, and M. R. Badrossamay, Optimization of FDM process parameters for tensile properties of polylactic acid specimens using Taguchi design of experiment method, Journal of Thermoplastic Composite Materials, 35(12), (2020), 1-18.

DOI: 10.1177/0892705720964560

Google Scholar

[28] L. Auffray, P. A. Gouge, and L. Hattali, Design of experiment analysis on tensile properties of PLA samples produced by fused filament fabrication, International Journal of Advanced Manufacturing Technology, 118, (2021), 4123-4137.

DOI: 10.1007/s00170-021-08216-7

Google Scholar

[29] H. Alzyod and P. Ficzere, Finite Element Modeling of Additive Manufacturing in Case of Metal Parts, Periodica Polytechnica Transportation Engineering, 50(4), (2022), 330–335.

DOI: 10.3311/PPtr.19242

Google Scholar

[30] A. Lepoivre, N. Boyard, A. Levy, and V. Sobotka, Heat transfer and adhesion study for the FFF additive manufacturing process, Procedia Manuf, 47, (2020), 948–955.

DOI: 10.1016/j.promfg.2020.04.291

Google Scholar

[31] P. G. De Gennes, Reptation of a polymer chain in the presence of fixed obstacles, P.G. De Gennes' Impact on Science: Soft Matter and Biophysics, 2, (2009), 35–42.

DOI: 10.1142/9789812564849_0015

Google Scholar

[32] C. Sheehan and E. Figgins, A comparison of mechanical properties between different percentage layups of a single-style carbon fibre ankle foot orthosis, Prosthet Orthot Int, 41(4), 2017, 364–372.

DOI: 10.1177/0309364616652015

Google Scholar

[33] F. H. Abdalsadah, F. Hasan, Q. Murtaza, and A. A. Khan, Design and manufacture of a custom ankle–foot orthoses using traditional manufacturing and fused deposition modeling, Progress in Additive Manufacturing, 6(3), (2021), 555–570.

DOI: 10.1007/s40964-021-00178-2

Google Scholar

[34] G. Rogati, P. Caravaggi, and A. Leardini, Design principles, manufacturing and evaluation techniques of custom dynamic ankle-foot orthoses: a review study, J Foot Ankle Res, 15(1), (2022), 1–12.

DOI: 10.1186/s13047-022-00547-2

Google Scholar

[35] C. Casavola, A. Cazzato, V. Moramarco, and G. Pappalettera, Residual stress measurement in Fused Deposition Modelling parts, Polym Test, 58, (2017), 249–255.

DOI: 10.1016/j.polymertesting.2017.01.003

Google Scholar

[36] N. van de Werken, H. Tekinalp, P. Khanbolouki, S. Ozcan, A. Williams, and M. Tehrani, Additively manufactured carbon fiber-reinforced composites: State of the art and perspective, Addit Manuf, 31(1), (2020), 100962.

DOI: 10.1016/j.addma.2019.100962

Google Scholar

[37] B. Fiedler, M. Hojo, and S. Ochiai, The influence of thermal residual stresses on the transverse strength of CFRP using FEM, Composites Part A: Applied Science and Manufacturing, 33(10), (2002), 1323-1326.

DOI: 10.1016/s1359-835x(02)00169-0

Google Scholar

[38] B. Fiedler, M. Hojo, S. Ochiai, K. Schulte, and M. Ochi, Finite-element modeling of initial matrix failure in CFRP under static transverse tensile load, 61(1), (2001), 95-105.

DOI: 10.1016/S0266-3538(00)00198-6

Google Scholar

[39] C. L. Brockett and G. J. Chapman, Biomechanics of the ankle, Orthop Trauma, 30(3), (2016), 232–238.

DOI: 10.1016/j.mporth.2016.04.015

Google Scholar

[40] F. H. Abdalsadah, F. Hasan, Q. Murtaza, and A. A. Khan, Design and manufacture of a custom ankle–foot orthoses using traditional manufacturing and fused deposition modeling, Progress in Additive Manufacturing, 6(3), (2021), 555–570.

DOI: 10.1007/s40964-021-00178-2

Google Scholar