[1]
K.K. Chawla, Composite Materials, Third Edit., Springer Science+Business Media New York, 2012.
Google Scholar
[2]
S. M. F. Kabir, K. Mathur, and A. F. M. Seyam, A critical review on 3D printed continuous fiber-reinforced composites: History, mechanism, materials and properties, Compos Struct, 232, (2020), 111476.
DOI: 10.1016/j.compstruct.2019.111476
Google Scholar
[3]
N. Mohan, P. Senthil, S. Vinodh, and N. Jayanth, A review on composite materials and process parameters optimisation for the fused deposition modelling process, Virtual Phys Prototyp, 12(1), (2017), 47–59.
DOI: 10.1080/17452759.2016.1274490
Google Scholar
[4]
L. W. Kariuki, B. W. Ikua, S. K. Karanja, S. P. Ng'ang'a, and H. Zeidler, Fused filament fabrication of carbon fiber-reinforced polymer composite: Effect of process parameters on flexural properties, Engineering Reports, (2023), 12807.
DOI: 10.1002/eng2.12807
Google Scholar
[5]
W. Zhang et al., Characterization of residual stress and deformation in additively manufactured ABS polymer and composite specimens, Compos Sci Technol, 150, (2017), 102–110.
DOI: 10.1016/j.compscitech.2017.07.017
Google Scholar
[6]
C. Casavola, A. Cazzato, V. Moramarco, and G. Pappalettera, Residual stress measurement in Fused Deposition Modelling parts, Polym Test, 58, (2017), 249–255.
DOI: 10.1016/j.polymertesting.2017.01.003
Google Scholar
[7]
H. Alzyod and P. Ficzere, Prediction of the influence of printing parameters on the residual stress using numerical simulation, System Safety: Human - Technical Facility - Environment, 4(1), (2022), 150–156.
DOI: 10.2478/czoto-2022-0015
Google Scholar
[8]
S. Wang, Y. Ma, Z. Deng, S. Zhang, and J. Cai, Effects of fused deposition modeling process parameters on tensile, dynamic mechanical properties of 3D printed polylactic acid materials, Polym Test, 86(1), (2020), 106483.
DOI: 10.1016/j.polymertesting.2020.106483
Google Scholar
[9]
A. M. Oviedo, A. H. Puente, C. Bernal, and E. Pérez, Mechanical evaluation of polymeric filaments and their corresponding 3D printed samples, Polym Test, 88(1), (2020).
DOI: 10.1016/j.polymertesting.2020.106561
Google Scholar
[10]
S. Ding, B. Zou, P. Wang, and H. Ding, Effects of nozzle temperature and building orientation on mechanical properties and microstructure of PEEK and PEI printed by 3D-FDM, Polym Test, 78(6), (2019), 105948.
DOI: 10.1016/j.polymertesting.2019.105948
Google Scholar
[11]
D. Croccolo, M. De Agostinis, and G. Olmi, Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30, Comput Mater Sci, 79, (2013), 506–518.
DOI: 10.1016/j.commatsci.2013.06.041
Google Scholar
[12]
Y. Zhou, T. Nyberg, G. Xiong, and D. Liu, Temperature Analysis in the Fused Deposition Modeling Process, Proceedings - 2016 3rd International Conference on Information Science and Control Engineering, (2016), 678–682.
DOI: 10.1109/ICISCE.2016.150
Google Scholar
[13]
S. F. Costa, F. M. Duarte, and J. A. Covas, Thermal conditions affecting heat transfer in FDM/FFE: a contribution towards the numerical modelling of the process, Virtual Phys Prototyp, 10(1), (2015), 35–46.
DOI: 10.1080/17452759.2014.984042
Google Scholar
[14]
A. Cattenone, S. Morganti, G. Alaimo, and F. Auricchio, Finite element analysis of additive manufacturing based on fused deposition modeling: Distortions prediction and comparison with experimental data, Journal of Manufacturing Science and Engineering, Transactions of the ASME, 141(1), (2019).
DOI: 10.1115/1.4041626
Google Scholar
[15]
H. Xia, J. Lu, S. Dabiri, and G. Tryggvason, Fully resolved numerical simulations of fused deposition modeling. Part I: fluid flow, Rapid Prototyp J, 24(2), (2018), 463–476.
DOI: 10.1108/RPJ-12-2016-0217
Google Scholar
[16]
N. H. Huu, D. H. V. Ho, T. N. Huu, H. B. Trong, and T. H. T. Thi, Numerical simulation of flow behaviour of PLA and PLA-Copper during fused deposition modeling process, Materials Science Forum, 1064(1), (2022), 53–63.
DOI: 10.4028/p-uklbcx
Google Scholar
[17]
W. Associates and A. International, Executive summary Wohlers report 2023, (2023).
Google Scholar
[18]
S. Ghosh, Predictive modeling of solidification during laser additive manufacturing of nickel superalloys: Recent developments, future directions, Mater Res Express, 5(1), (2018).
DOI: 10.1088/2053-1591/aaa04c
Google Scholar
[19]
H. Alzyod and P. Ficzere, Material-Dependent Effect of Common Printing Parameters on Residual Stress and Warpage Deformation in 3D Printing: A Comprehensive Finite Element Analysis Study, Polymers (Basel), 15(13), (2023), 2893.
DOI: 10.3390/polym15132893
Google Scholar
[20]
F. S. Shahar, M. T. Hameed Sultan, A. U. M. Shah, and S. N. Azrie Safri, A comparative analysis between conventional manufacturing and additive manufacturing of ankle-foot orthosis, Applied Science and Engineering Progress, 13(2), (2020), 96–103.
DOI: 10.14416/j.asep.2020.03.002
Google Scholar
[21]
I. Doghri and L. Adam, Integrated Computational Materials Engineering (ICME), (2020).
Google Scholar
[22]
Polymaker, PolyMide TM PA12-CF Industrial, (2021).
Google Scholar
[23]
T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica, 21, (1973), 571–574.
DOI: 10.1016/0001-6160(73)90064-3
Google Scholar
[24]
W. Voigt, Uber die beziehung zwischen den beiden elastizitatskonstanten isotroper korper, Ann Phys, 274(12), (1889), 573–587.
DOI: 10.1002/andp.18892741206
Google Scholar
[25]
ASTM INTERNATIONAL, Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM D790-17, (2017).
DOI: 10.1520/d0790-15
Google Scholar
[26]
International Committee of the Red Cross's Physical Rehabilitation Programme, Manufacturing Guidelines Ankle-Foot Orthosis, (2010).
Google Scholar
[27]
M. Heidari-Rarani, N. Ezati, P. Sadeghi, and M. R. Badrossamay, Optimization of FDM process parameters for tensile properties of polylactic acid specimens using Taguchi design of experiment method, Journal of Thermoplastic Composite Materials, 35(12), (2020), 1-18.
DOI: 10.1177/0892705720964560
Google Scholar
[28]
L. Auffray, P. A. Gouge, and L. Hattali, Design of experiment analysis on tensile properties of PLA samples produced by fused filament fabrication, International Journal of Advanced Manufacturing Technology, 118, (2021), 4123-4137.
DOI: 10.1007/s00170-021-08216-7
Google Scholar
[29]
H. Alzyod and P. Ficzere, Finite Element Modeling of Additive Manufacturing in Case of Metal Parts, Periodica Polytechnica Transportation Engineering, 50(4), (2022), 330–335.
DOI: 10.3311/PPtr.19242
Google Scholar
[30]
A. Lepoivre, N. Boyard, A. Levy, and V. Sobotka, Heat transfer and adhesion study for the FFF additive manufacturing process, Procedia Manuf, 47, (2020), 948–955.
DOI: 10.1016/j.promfg.2020.04.291
Google Scholar
[31]
P. G. De Gennes, Reptation of a polymer chain in the presence of fixed obstacles, P.G. De Gennes' Impact on Science: Soft Matter and Biophysics, 2, (2009), 35–42.
DOI: 10.1142/9789812564849_0015
Google Scholar
[32]
C. Sheehan and E. Figgins, A comparison of mechanical properties between different percentage layups of a single-style carbon fibre ankle foot orthosis, Prosthet Orthot Int, 41(4), 2017, 364–372.
DOI: 10.1177/0309364616652015
Google Scholar
[33]
F. H. Abdalsadah, F. Hasan, Q. Murtaza, and A. A. Khan, Design and manufacture of a custom ankle–foot orthoses using traditional manufacturing and fused deposition modeling, Progress in Additive Manufacturing, 6(3), (2021), 555–570.
DOI: 10.1007/s40964-021-00178-2
Google Scholar
[34]
G. Rogati, P. Caravaggi, and A. Leardini, Design principles, manufacturing and evaluation techniques of custom dynamic ankle-foot orthoses: a review study, J Foot Ankle Res, 15(1), (2022), 1–12.
DOI: 10.1186/s13047-022-00547-2
Google Scholar
[35]
C. Casavola, A. Cazzato, V. Moramarco, and G. Pappalettera, Residual stress measurement in Fused Deposition Modelling parts, Polym Test, 58, (2017), 249–255.
DOI: 10.1016/j.polymertesting.2017.01.003
Google Scholar
[36]
N. van de Werken, H. Tekinalp, P. Khanbolouki, S. Ozcan, A. Williams, and M. Tehrani, Additively manufactured carbon fiber-reinforced composites: State of the art and perspective, Addit Manuf, 31(1), (2020), 100962.
DOI: 10.1016/j.addma.2019.100962
Google Scholar
[37]
B. Fiedler, M. Hojo, and S. Ochiai, The influence of thermal residual stresses on the transverse strength of CFRP using FEM, Composites Part A: Applied Science and Manufacturing, 33(10), (2002), 1323-1326.
DOI: 10.1016/s1359-835x(02)00169-0
Google Scholar
[38]
B. Fiedler, M. Hojo, S. Ochiai, K. Schulte, and M. Ochi, Finite-element modeling of initial matrix failure in CFRP under static transverse tensile load, 61(1), (2001), 95-105.
DOI: 10.1016/S0266-3538(00)00198-6
Google Scholar
[39]
C. L. Brockett and G. J. Chapman, Biomechanics of the ankle, Orthop Trauma, 30(3), (2016), 232–238.
DOI: 10.1016/j.mporth.2016.04.015
Google Scholar
[40]
F. H. Abdalsadah, F. Hasan, Q. Murtaza, and A. A. Khan, Design and manufacture of a custom ankle–foot orthoses using traditional manufacturing and fused deposition modeling, Progress in Additive Manufacturing, 6(3), (2021), 555–570.
DOI: 10.1007/s40964-021-00178-2
Google Scholar