[1]
Eftekharnejad, Sara, et al, Impact of increased penetration of photovoltaic generation on power systems. IEEE transactions on power systems 28, no. 2 (2012) 893-901.
DOI: 10.1109/tpwrs.2012.2216294
Google Scholar
[2]
M. Kyesswa., H. Çakmak., U. Kühnapfel, and V. Hagenmeyer, Dynamic Modeling of Wind and Solar Power Generation with Grid Support for Large-Scale Integration in Power Systems.PES Innovative Smart Grid Technologies Europe (ISGT-Europe), IEEE 2020 569-573.
DOI: 10.1109/isgt-europe47291.2020.9248883
Google Scholar
[3]
M.A Tayyab, and E. Muljadi,. Dynamic Stability of Large-Scale Photovoltaic Based Generation Integration into Power Systems. 5th International Conference on Power Engineering and Renewable Energy (ICPERE) .IEEE 2022 1-6.
DOI: 10.1109/icpere56870.2022.10037419
Google Scholar
[4]
G. A. Maria, C. Tang and J. Kim, Hybrid transient stability analysis (power systems). in IEEE Transactions on Power Systems 5, no. 2, (May 1990) 384-393.
DOI: 10.1109/59.54544
Google Scholar
[5]
J.D. Glover., M.S. Sarma, and T. Overbye, Power system analysis & design, SI version. Cengage Learning, 2012.
Google Scholar
[6]
M.A. Almutiari., and Muhyaddin J. Rawa. Transient stability analysis of large-scale PV penetration on power systems. International Journal of Engineering Research and Technology 13, no. 5 (2020): pp.1030-1038.
DOI: 10.37624/ijert/13.5.2020.1030-1038
Google Scholar
[7]
E. Gulachenski, et al, Photovoltaic generation effects on distribution feeders, volume 1: Description of the Gardner, Massachusetts, twenty-first-century pv community and research program. EPRI report EL-6754, Tech. Rep (1990).
Google Scholar
[8]
N. Srisaen., and A. Sangswang, Effects of PV grid-connected system location on a distribution system. Asia Pacific conference on circuits and systems. IEEE, (2006).
DOI: 10.1109/apccas.2006.342175
Google Scholar
[9]
P.P. Barker., and R.W. De Mello. Determining the impact of distributed generation on power systems. I. Radial distribution systems. Power Engineering Society Summer Meeting (Cat. No. 00CH37134). 3. IEEE, (2000).
DOI: 10.1109/pess.2000.868775
Google Scholar
[10]
S. Jayesh., M. Narimani, and G. Moschopoulos. Solar power plant installation and integration: Case study for Oshawa Power and Utilities Corporation. Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, (2013).
DOI: 10.1109/ccece.2013.6567683
Google Scholar
[11]
M.D. Baquedano-Aguilar., et al. Impact of increased penetration of large-scale PV generation on short-term stability of power systems. 36th Central American and Panama Convention (CONCAPAN XXXVI). IEEE, (2016).
DOI: 10.1109/concapan.2016.7942390
Google Scholar
[12]
G, Bhatt. and S, Affljulla,. Analysis of large scale PV penetration impact on IEEE 39-Bus power system. 58th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON). IEEE, (2017) pp.1-6 .
DOI: 10.1109/rtucon.2017.8124840
Google Scholar
[13]
B. Darren. , Transient Stability Impact of large-scale Photovoltaic System on Electric Power Grid. (2017).
Google Scholar
[14]
M. A. Almutiari and M. J. Rawa. Transient Stability Analysis of Large-Scale PV Penetration on Power Systems. (2020). [Online]. Information on http://www.irphouse.com
DOI: 10.37624/ijert/13.5.2020.1030-1038
Google Scholar
[15]
R, Jayabarathi., R. Sivaramakrishnan, S. Sruthi, M. Raakesh, and B. Manoj. Simulation and Implementation of Solar Power Penetration in an IEEE 5 bus System. 5th International Conference on Advanced Computing & Communication Systems (ICACCS). IEEE, (2019), pp.263-266.
DOI: 10.1109/icaccs.2019.8728428
Google Scholar
[16]
Q, Xiao., K, Zhao., W, Jiang., and S, Zhu. The effect of large-scale PV power on stability of power system. Information Management, Communicates, Electronic and Automation Control Conference (IMCEC),. IEEE, (2018) pp.1173-1177.
DOI: 10.1109/imcec.2018.8469248
Google Scholar
[17]
A.K, Kumar., M. P. Selvan, and K. Rajapandiyan. Grid stability analysis for high penetration solar photovoltaics. In 1st International Conference on Large-Scale Grid Integration of Renewable Energy in India, (2017) pp.6-8.
Google Scholar
[18]
E, Tavukcu., and B.E, Türkay. Transient stability analysis of the transmission system considering the initial steady state results. 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE),. IEEE, (2017) pp.758-763.
DOI: 10.1109/atee.2017.7905054
Google Scholar
[19]
S.L. Kabir., A. H. Chowdhury., M. Rahman, and J. Alam. Inclusion of slack bus in Newton Raphson load flow study. In 8th International Conference on Electrical and Computer Engineering,. IEEE, (2014) pp.282-284.
DOI: 10.1109/icece.2014.7026900
Google Scholar
[20]
S. Mishra., and Y.S. Brar. Load Flow Analysis Using MATLAB. IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS),. IEEE, (2022) pp.1-4.
DOI: 10.1109/sceecs54111.2022.9741005
Google Scholar
[21]
Manohar Singh et al. Investigation on Power System Stability with Integration of Renewable Resources. IEEE 10th Power India International Conference (PIICON) (2022) pp.1-6.
DOI: 10.1109/piicon56320.2022.10045098
Google Scholar
[22]
A. Hoballah et al. Impact of Large Penetration of Renewable Energy on Power System Transient Stability. 22nd International Middle East Power Systems Conference (MEPCON) (2021) pp.104-109.
DOI: 10.1109/mepcon50283.2021.9686263
Google Scholar
[23]
Swati Nirmal et al. A Review of Renewable Energy Systems for Industrial Applications. International Journal for Research in Applied Science and Engineering Technology (2022)
Google Scholar
[24]
H, Zimmer., B. Niersbach., and J. Hanson. Optimization of power plant AVR parameters to improve transient voltage stability. 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG). IEEE, (2017).
DOI: 10.1109/cpe.2017.7915147
Google Scholar
[25]
H, Quinot., H. Bourles, and T. Margotin, Robust coordinated AVR+ PSS for damping large-scale power systems. IEEE Transactions on Power Systems 14, no. 4 (1999). pp.1446-1451.
DOI: 10.1109/59.801923
Google Scholar
[26]
P. Kundur, M.J. Balu and M.G. Lauby., Power system stability and control, McGray-Hill, 1994.
Google Scholar
[27]
R.T, Byerly., D. E. Sherman, and D. K. McLain. Normal modes and mode shapes applied to dynamic stability analysis. IEEE Transactions on Power Apparatus and Systems 94, no. 2 (1975). pp.224-229.
DOI: 10.1109/t-pas.1975.31845
Google Scholar
[28]
P, Varaiya., F.F, Wu, and R.L, Chen, Direct methods for transient stability analysis of power systems: Recent results. Proceedings of the IEEE 73, no. 12 (1985). pp.1703-1715.
DOI: 10.1109/proc.1985.13366
Google Scholar
[29]
S, Adak., Hasan Cangi, and A. S, Yilmaz, Thevenin equivalent of solar PV cell model and maximum power transfer. International Conference on Electrical, Communication, and Computer Engineering (ICECCE),. IEEE, (2021) pp.1-5.
DOI: 10.1109/icecce52056.2021.9514221
Google Scholar
[30]
B.K. Dey., I. Khan., Nirabhra Mandal., and A. Bhattacharjee. Mathematical modeling and characteristic analysis of Solar PV Cell. 7th annual Information Technology, electronics and mobile communication conference (IEMCON), IEEE, (2016) pp.1-5 .
DOI: 10.1109/iemcon.2016.7746318
Google Scholar
[31]
H. Park., and H. Kim. PV cell modeling on the single-diode equivalent circuit. 39th Annual Conference of the IEEE Industrial Electronics Society. IEEE, (2013) pp.1845-1849. .
DOI: 10.1109/iecon.2013.6699412
Google Scholar
[32]
PSCAD Knowledge-based Grid-connected photovoltaic system. information on: https://www.pscad.com/knowledge-base/article/176scenario.
Google Scholar
[33]
S. Gao., S. Cao, and Y. Zhang. Sinusoidal pulse width modulation design based DDS. 2nd International Workshop on Intelligent Systems and Applications. IEEE, (2010).
DOI: 10.1109/iwisa.2010.5473554
Google Scholar
[34]
H. Yang., D. Xia., X. Zhang., and D. Xu. Impedance Modeling and Stability Analysis of Three-phase Grid-connected Inverter with LCL Filter in dq-frame. 21st European Conference on Power Electronics and Applications (EPE'19 ECCE Europe). IEEE, (2019) pp. P-1.
DOI: 10.23919/epe.2019.8914973
Google Scholar
[35]
B. Tamimi, C. Cañizares, and K. Bhattacharya, System stability impact of large-scale and distributed solar photovoltaic generation: The case of Ontario, Canada. IEEE transactions on sustainable energy 4, no. 3 (2013). pp.680-688.
DOI: 10.1109/tste.2012.2235151
Google Scholar
[36]
N.Anwar., A. Hanif., H.F. Khan, and M.F Ullah. Transient stability analysis of the IEEE-9 bus system under multiple contingencies. Engineering, Technology & Applied Science Research 10, no. 4 (2020). pp.5925-5932.
DOI: 10.48084/etasr.3273
Google Scholar