[1]
Liu Q, Lan F, Chen J, et al. A review of proton exchange membrane fuel cell water management: Membrane electrode assembly[J]. Journal of Power Sources, 2022, 517: 230723.
DOI: 10.1016/j.jpowsour.2021.230723
Google Scholar
[2]
Lee H F, Chang J Y, Chen-Yang Y W. Improvement in physical properties of single-layer gas diffusion layers using graphene for proton exchange membrane fuel cells[J]. RSC advances, 2018, 8(40): 22506-22514.
DOI: 10.1039/c8ra02062k
Google Scholar
[3]
Liu J, Shin S, Um S. Comprehensive statistical analysis of heterogeneous transport characteristics in multifunctional porous gas diffusion layers using lattice Boltzmann method for fuel cell applications[J]. Renewable Energy, 2019, 139: 279-291.
DOI: 10.1016/j.renene.2019.02.089
Google Scholar
[4]
Zhu L, Zhang H, Xiao L, et al. Pore-scale modeling of gas diffusion layers: Effects of compression on transport properties[J]. Journal of Power Sources, 2021, 496:229822-229832.
DOI: 10.1016/j.jpowsour.2021.229822
Google Scholar
[5]
Zhang H, Zhan Z, Chen B, et al. Anisotropic transport properties of gas diffusion layerbased on pore-scale model[J]. Journal of Jilin University (Engineering and Technology Edition), 2022,52(09):2055-2062.
Google Scholar
[6]
G.R. Molaeimanesh, M. Nazemian. Investigation of GDL compression effects on the performance of a PEM fuel cell cathode by lattice Boltzmann method[J]. Journal of Power Sources, 2017, 359: 494-506.
DOI: 10.1016/j.jpowsour.2017.05.078
Google Scholar
[7]
Anyanwu, I. S.; Niu, Z.; Jiao, D.; Najmi, A.; Liu, Z.; Jiao, K. Liquid Water Transport Behavior at GDL-Channel Interface of a Wave-Like Channel[J]. Energies, 2020, 13, 2726-2745.
DOI: 10.3390/en13112726
Google Scholar
[8]
Liao J, Yang G, Li S, et al. Effect of Structural Parameters on Mass Transfer Characteristics in the Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells Using the Lattice Boltzmann Method[J]. Energy Fuels, 2021, 35, 2654−2664.
DOI: 10.1021/acs.energyfuels.0c03802
Google Scholar
[9]
Lee T, Yang C. A parametric study on the deformation of gas diffusion layer in PEM fuel cell[J]. Journal of Mechanical Science and Technology, 2020, 34, 259− 268.
DOI: 10.1007/s12206-019-1227-8
Google Scholar
[10]
Zhu L J, Yang W F, Xiao L S, et al. Stochastically modeled gas diffusion layers: effects of binder and polytetrafluoroethylene on effective gas diffusivity[J]. Journal of the Electrochemical Society, 2021, 168(1): 014514-014525.
DOI: 10.1149/1945-7111/abdc60
Google Scholar
[11]
Zhu L, Wang S, Sui P C, et al. Multiscale modeling of an angled gas diffusion layer for polymer electrolyte membrane fuel cells: Performance enhancing for aviation applications[J]. International Journal of Hydrogen Energy, 2021, 46(39): 20702-20714.
DOI: 10.1016/j.ijhydene.2021.03.166
Google Scholar
[12]
Molaeimanesh, G. R.; Akbari, M. H. A pore-scale model for the cathode electrode of a proton exchange membrane fuel cell by lattice Boltzmann method[J]. Korean Journal of Chemical Engineering, 2015, 32: 397−405.
DOI: 10.1007/s11814-014-0229-6
Google Scholar
[13]
Molaeimanesh, G. R.; Saeidi Googarchin, H.; Qasemian Moqaddam, A. Lattice Boltzmann simulation of proton exchange membrane fuel cells − A review on opportunities and challenges[J]. International Journal of Hydrogen Energy, 2016, 41: 22221−22245.
DOI: 10.1016/j.ijhydene.2016.09.211
Google Scholar
[14]
Molaeimanesh, G. R.; Akbari, M. H. Impact of PTFE distribution on the removal of liquid water from a PEMFC electrode by lattice Boltzmann method[J]. International Journal of Hydrogen Energy, 2014, 39: 8401− 8409.
DOI: 10.1016/j.ijhydene.2014.03.089
Google Scholar
[15]
W Wu, F Jiang. Microstructure reconstruction and characterization of PEMFC electrodes[J]. International Journal of Hydrogen Energy, 2014, 39(28): 15894–15906.
DOI: 10.1016/j.ijhydene.2014.03.074
Google Scholar
[16]
Gao Y, Angel Montana, Chen F , et al. Evaluation of porosity and thickness on effective diffusivity in gas diffusion layer[J]. Journal of Power Sources, 2017, 342(28): 252–265.
DOI: 10.1016/j.jpowsour.2016.12.052
Google Scholar
[17]
E. Shakerinejad a, M.H. Kayhani a, M. Nazari, et al. Increasing the performance of gas diffusion layer by insertion of small hydrophilic layer in proton-exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2018, 43(4): 2410–2428.
DOI: 10.1016/j.ijhydene.2017.12.038
Google Scholar
[18]
Hao L, Cheng P. Capillary pressures in carbon paper gas diffusion layers having hydrophilic and hydrophobic pores[J]. International Journal of Heat and Mass Transfer, 2012, 55(1–3): 133–139.
DOI: 10.1016/j.ijheatmasstransfer.2011.08.049
Google Scholar
[19]
Liu Q,Lan F,Chen J, et al. Analysis on Influence of Fiber Pore Characteristics on Liquid Water Transmission of Gas Diffusion Layer in PEMFC [J]. Automotive Engineering, 2022, 44 (07): 1069-1079+1068.
Google Scholar
[20]
H.R. Ashorynejad, K. Javaherdeh, Evaluation of passive and active lattice Boltzmann method for PEM fuel cell modeling[J]. Physica A: Statistical Mechanics and its Applications, 2019, 535: 121943.
DOI: 10.1016/j.physa.2019.121943
Google Scholar
[21]
M. Mukherjee, C. Bonnet. F. Lapicque, Estimation of through-plane and in-plane gas permeability across gas diffusion layers (GDLs): Comparison with equivalent permeability in bipolar plates and relation to fuel cell performance[J]. International Journal of Hydrogen Energy, 2020, 45(24): 13428–13440.
DOI: 10.1016/j.ijhydene.2020.03.026
Google Scholar
[22]
D.H. Jeon, H. Kim. Effect of compression on water transport in gas diffusion layer of polymer electrolyte membrane fuel cell using lattice Boltzmann method[J]. Journal of Power Sources,2015, 294: 393–405.
DOI: 10.1016/j.jpowsour.2015.06.080
Google Scholar
[23]
M. Nazemian, G.R. Molaeimanesh. Impact of carbon paper structural parameters on the performance of a polymer electrolyte fuel cell cathode via lattice Boltzmann method[J]. Acta Mechanica Sinica, 2020,36 (2): 367–380.
DOI: 10.1007/s10409-019-00919-1
Google Scholar
[24]
S.M. Baek, S.G. Koh, K.N. Kim, et al. A numerical study on the performance of polymer electrolyte membrane fuel cells due to the variation in gas diffusion layer permeability[J]. Journal of Mechanical Science and Technology, 2011,25 (2): 457–467.
DOI: 10.1007/s12206-010-1229-z
Google Scholar
[25]
L.i. Chen, H. Luan, Y. Feng, et al. Coupling between finite volume method and Lattice Boltzmann method and its application to fluid flow and mass transport in proton exchange membrane fuel cell[J]. International Journal of Heat and Mass Transfer, 2012, 55(13-14): 3834–3848.
DOI: 10.1016/j.ijheatmasstransfer.2012.02.020
Google Scholar
[26]
Gao Y, Jin T, Wu X. Stochastic 3D carbon cloth GDL reconstruction and transport prediction[J]. Energies, 2020, 13: 572-586.
DOI: 10.3390/en13030572
Google Scholar
[27]
Espinoza-Andaluz M.; Li T.; Andersson M. Impact of waterdrop presence on diffusion parameters of PEFC gas diffusion layers[J]. Energy Procedia,2019, 158: 1400−1405.
DOI: 10.1016/j.egypro.2019.01.341
Google Scholar
[28]
Espinoza-Andaluz M, Andersson M, Sundén B. Modeling of a Gradient Porosity SOFC Anode using the Lattice Boltzmann Method[J]. Energy procedia,2017, 105: 1332−1338.
DOI: 10.1016/j.egypro.2017.03.484
Google Scholar
[29]
Froning D, Yu J, Gaiselmann G, et al. Impact of compression on gas transport in non-woven gas diffusion layers of high temperature polymer electrolyte fuel cells[J]. Journal of Power Sources, 2016, 318: 26−34.
DOI: 10.1016/j.jpowsour.2016.03.102
Google Scholar
[30]
Gao Y, Wu X, Sun Y. Characterization and diffusion in reconstructed gas diffusion layer based on stochastic method[J]. Journal of Tongji University (Natural Science), 2017, 45(01): 109-118.
Google Scholar
[31]
Espinoza M, Sundén B, Andersson M. Impact on diffusion parameters computation in gas diffusion layers, considering the land/channel region, using the lattice Boltzmann method[J]. ECS Transactions, 2016, 75(14): 521-530.
DOI: 10.1149/07514.0521ecst
Google Scholar
[32]
Tomadakis M M, Robertson T J. Viscous permeability of random fiber structures: comparison of electrical and diffusional estimates with experimental and analytical results[J]. Journal of Composite Materials, 2005, 39(2): 163-188.
DOI: 10.1177/0021998305046438
Google Scholar
[33]
Johnson D L, Koplik J, Schwartz L M. New pore-size parameter characterizing transport in porous media[J]. Physical review letters, 1986, 57(20): 2564-2567.
DOI: 10.1103/physrevlett.57.2564
Google Scholar
[34]
Zhang H, Zhu L, Harandi H B, et al. Microstructure reconstruction of the gas diffusion layer and analyses of the anisotropic transport properties[J]. Energy Conversion and Management, 2021, 241: 114293-114305.
DOI: 10.1016/j.enconman.2021.114293
Google Scholar