Comprehensive Study on Mechanical and Transport Properties of Roller-Compacted Concrete Incorporating Reclaimed Asphalt Pavement

Article Preview

Abstract:

This study assesses the feasibility and effects of incorporating reclaimed asphalt pavement (RAP) into roller-compacted concrete (RCC) for pavement applications. Six RCC mixtures, incorporating varying RAP fractions (0% to 100% as volumetric substitutions of natural aggregates), were formulated and evaluated for their fresh, mechanical, and transport properties. Scanning electron microscopy (SEM) analysis was conducted on the RCC mixture containing 100% RAP. The results indicated a decrease in overall mechanical properties as RAP content increased, with 28-day compressive and split tensile strengths declining by 70% and 40%, respectively, in the case of full replacement. This decline in mechanical performance was accompanied by heightened porosity and sorptivity. Nevertheless, RCC mixtures with up to 60% RAP met pavement construction specifications. SEM micrographs revealed significant pore concentration, especially in the interfacial transition zone between RAP aggregates and the cementitious matrix, indicating poor adhesion between these RCC phases. Furthermore, empirical correlations were established to illustrate the influence of RAP content and increased porosity on RCC's mechanical properties and sorptivity. These correlations allow engineers to predict the characteristics of RCC for any RAP rate and provide insights into the impact of substituting natural aggregates with RAP on porosity and, consequently, RCC's hardened-state characteristics.

You might also be interested in these eBooks

Info:

Pages:

61-78

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Salehi, M. Arashpour, J. Kodikara, and R. Guppy, Sustainable pavement construction: A systematic literature review of environmental and economic analysis of recycled materials, Journal of Cleaner Production. 313 (2021) 127936. https://doi.org/10.1016/j.jclepro. 2021.127936

DOI: 10.1016/j.jclepro.2021.127936

Google Scholar

[2] R. Ben Othman, S. El Euch Khay, A. Loulizi, and J. Neji, Laboratory evaluation of an ecological pavement construction material: sand concrete reinforced with polypropylene fibres, European Journal of Environmental and Civil Engineering. 23(3) (2019) 287-299

DOI: 10.1080/19648189.2016.1277372

Google Scholar

[3] A. Wafa, S.E. Khay, M.Karim, and J.Neji, Experimental Study of the Mechanical Behaviour of Brick Waste Concrete and Analytical Prediction of its Elastic Modulus as a Three-Phase Composite Material, International Journal of Engineering Research in Africa. 57 (2021) 125 - 138.

DOI: 10.4028/www.scientific.net/jera.57.125

Google Scholar

[4] T. Wissem and L. Amara, Selection of a Pavement Structure from Technically Established Alternatives Based on Construction Cost, Energy Consumption, and Carbon Footprint, International Journal of Engineering Research in Africa. 62 (2022) 85 - 106

DOI: 10.4028/p-xx05a5

Google Scholar

[5] M. Mohanty, S.S. Mohapatra, and S. D. Ph. Nayak, Efficacy of C & D waste in base / subbase layers of pavement - current trends and future prospectives: A systematic review, Construction and Building Materials, 340 (2022) 127726

DOI: 10.1016/j.conbuildmat.2022.127726

Google Scholar

[6] B.A. Williams, J.R. Willis, J. Shacat, Asphalt pavement industry survey on recycled materials and warm-mix asphalt usage: 2021, 12th ed. National Asphalt Pavement Association; Greenbelt, MD, USA: (2022). IS 138.

DOI: 10.31274/etd-180810-854

Google Scholar

[7] European Asphalt Pavement Association (EAPA). The Circular Economy of Asphalt. Technical Review (2021) 10 pages.

Google Scholar

[8] D. Vandewalle, V. Antunes, J. Neves, and A.C. Freire, Assessment of Eco-Friendly Pavement Construction and Maintenance Using Multi-Recycled RAP Mixtures, Recycling. 5(17) (2020)

DOI: 10.3390/recycling5030017

Google Scholar

[9] L. Yao, Z. Leng, J. Lan, R. Chen, and J. Jiang, Environmental and economic assessment of collective recycling waste plastic and reclaimed asphalt pavement into pavement construction: a case study in Hong Kong, Journal of Cleaner Production. 336 (2022) 130405

DOI: 10.1016/j.jclepro.2022.130405

Google Scholar

[10] R. Cao, Z. Leng, and S.C. Hsu, Comparative eco-efficiency analysis on asphalt pavement rehabilitation alternatives: hot in-place recycling and milling-and-filling, Journal of Cleaner Production. 210 (2019) 1385–1395

DOI: 10.1016/j.jclepro.2018.11.122

Google Scholar

[11] Y. Ma, P. Polaczyk, W. Hu, M., Zhang, and B. Huang, Quantifying the effective mobilized RAP content during hot in-place recycling techniques, Journal Of Cleaner Production. 314 (2021) 27953

DOI: 10.1016/j.jclepro.2021.127953

Google Scholar

[12] B.Ilhem, T. K.Tesnim, N.Mondher, and N.Jamel, Experimental and Numerical Studies of Viscoelastic Behavior of Bituminous Mixture with a High Rate of Reclaimed Asphalt Pavement, Dune Sand and Lime. International Journal of Engineering Research in Africa. 64 (2023)17–34.

DOI: 10.4028/p-684y63

Google Scholar

[13] F. Xiao, S. Yao, J. Wang, X. Li, and S.N. Amirkhanian, A Literature Review on Cold Recycling Technology of Asphalt Pavement, Construction and Building Materials. 180 (2018) 579-604

DOI: 10.1016/j.conbuildmat.2018.06.006

Google Scholar

[14] S. Singh, G.D. Ransinchung, and P. Kumar, Feasibility study of RAP aggregates in cement concrete pavements, Road Materials and Pavement Design. 20 (2019) 151-170

DOI: 10.1080/14680629.2017.1380071

Google Scholar

[15] G. Masi, A. Michelacci, S. Manzi, and M.C. Bignozzi, Assessment of Reclaimed Asphalt Pavement (Rap) as Recycled Aggregate for Concrete, Construction and Building Materials. 341 (2022) 127745

DOI: 10.1016/j.conbuildmat.2022.127745

Google Scholar

[16] C. Pandiya and A.K. Saxena, Effect of Reclaimed Asphalt Pavement Aggregate on Hardened Properties of Concrete, International Journal for Research in Applied Science & Engineering Technology. 9(6) (2021) 1168-1172

DOI: 10.22214/ijraset.2021.38776

Google Scholar

[17] R. Vasudeva, and D.M. Akbar, Influence of Reclaimed Asphalt Pavement Aggregates on Strength and Durability Properties of Concrete Mixes in Rigid Pavements, The Journal of Engineering Research. 20(1) (2023) 1-11

DOI: 10.53540/tjer.vol20iss1pp1-11

Google Scholar

[18] T.R. Marjono, The Review on the Roller Compacted Concrete Performance: The Effect of Compaction Number on the Compressive Strength, Civil Engineering and Architecture. 11(5) (2023) 2392 - 2404

DOI: 10.13189/cea.2023.110511

Google Scholar

[19] R. Dadi, K.S. Shashi, and M. Abdul Akbar, Evaluation of roller compacted concrete for its application as high traffic resisting pavements with fatigue analysis, Construction and Building Materials. 401 (2023) 132977

DOI: 10.1016/j.conbuildmat.2023.132977

Google Scholar

[20] B.A.V. Ram Kumar, and G. Rama Prashat, Performance evaluation of sustainable materials in roller compacted concrete pavements: a state of art review, Journal of Building Pathology and Rehabilitation. 7 (2022) 1-15

DOI: 10.1007/s41024-022-00212-y

Google Scholar

[21] C. Chhorn, S.J. Hong, and S.W. Lee, A study on performance of roller-compacted concrete for pavement, Construction and Building Materials. 153 (2017) 535–543

DOI: 10.1016/j.conbuildmat.2017.07.135

Google Scholar

[22] A. Modarres, and Z. Hosseini, Mechanical properties of roller compacted concrete containing rice husk ash with original and recycled asphalt pavement material, Materials & Design. 64 (2014) 227–236

DOI: 10.1016/j.matdes.2014.07.072

Google Scholar

[23] C. Settari, F. Debieb, E. H. Kadri, and O. Boukendakdji, Assessing the effects of recycled asphalt pavement materials on the performance of roller compacted concrete, Construction and Building Materials. 101(1) (2015) 617–621

DOI: 10.1016/j.conbuildmat.2015.10.039

Google Scholar

[24] M. Fakhri, and A. Amoo Soltani, The effect of reclaimed asphalt pavement and crumb rubber on mechanical properties of roller compacted concrete pavement, Construction and Building Materials. 137 (2017) 470–484

DOI: 10.1016/j.conbuildmat.2017.01.136

Google Scholar

[25] S. Debbarma, S. Singh, and R.N.G.D. Ransinchung, Laboratory investigation on the fresh, mechanical, and durability properties of roller compacted concrete pavement containing reclaimed asphalt pavement aggregates, Transportation Research Record. 2673(10) (2019) 652-662

DOI: 10.1177/0361198119849585

Google Scholar

[26] I. Boussetta, S. El Euch Khay, and J. Neji, Experimental testing and modelling of roller compacted concrete incorporating RAP waste as aggregates, European Journal of Environmental and Civil Engineering. 25(4) (2018) 1–15

DOI: 10.1080/19648189.2018.1482792

Google Scholar

[27] H. Divandary and Y. Bashkoul, Evaluate the use of Recycled Asphalt Pavement (RAP) in the Construction of Roller Compacted Concret Pavement (RCC), Civil Engineering Journal. 4(5) (2018) 1157-1164

DOI: 10.28991/cej-0309164

Google Scholar

[28] M. Alireza, M. Abolfazl, and M. Dareyni, Durability and mechanical properties of roller compacted concrete containing coarse reclaimed asphalt pavement, The baltic journal of road and bridge engineering. 16(3) (2021) 82-110

DOI: 10.7250/bjrbe.2021-16.533

Google Scholar

[29] B. Ram Kumar and G. Ramakrishna, Sustainable Use of Red Mud and Reclaimed Asphalt Pavement Wastes in Roller Compacted Concrete,   International Journal of Pavement Research and Technology. 17 (2024) 291-305

DOI: 10.1007/s42947-022-00236-0

Google Scholar

[30] P. Sharma, S.K. Sharma, D. Rambabu, and B.S. Reddy, A detailed laboratory investigation on evolving the mix design of roller compacted concrete containing RAP aggregates and SCMs, Innovative Infrastructure Solutions. 8(284)(2023)

DOI: 10.1007/s41062-023-01248-w

Google Scholar

[31] AFNOR, Ciment - Partie 1 : composition, spécifications et critères de conformité des ciments courants, (NF EN 197-1), France, 2012.

Google Scholar

[32] AFNOR, Essais pour déterminer les caractéristiques géométriques des granulats - Partie 1 : détermination de la granularité - Analyse granulométrique par tamisage, (NF EN 933-1), France, 2012.

Google Scholar

[33] AFNOR, Essais pour déterminer les caractéristiques mécaniques et physiques des granulats - Partie 6 : détermination de la masse volumique et du coefficient d'absorption d'eau, (NF EN 1097-6), France, 2014.

Google Scholar

[34] LCPC, BétonlabPro2, Une nouvelle approche de la formulation des bétons, Logiciel de formulation, 2000.

Google Scholar

[35] F. de Larrard, Concrete mixture proportioning – A scientific approach, In S. Mindess & A. Bentur, (Eds.), Modern concrete technology (vol. 9, p.414), London: E & FN Spon, 1999.

Google Scholar

[36] P. Shafigh, M.M. Hashemi, B.H. Nam, and S.B. Koting, Optimum moisture content in roller-compacted concrete pavement, International Journal of Pavement Engineering. 21 (2020) 1769 - 1779

DOI: 10.1080/10298436.2019.1567919

Google Scholar

[37] AFNOR, Sols: reconnaissance et essais – Determination des references de compactage d'un materiau – Essai Proctor normal - Essai Proctor modifie, (NF P94-093) France, 2014.

Google Scholar

[38] AFNOR, Essais pour beton frais – Partie 2: Essai d'affaissement, (NF EN 12350-2), France, 2019.

Google Scholar

[39] AFNOR, Chaussées en béton de ciment - Exécution et contrôle, (NF P98-170), France, 2018.

Google Scholar

[40] AFNOR, Essais pour béton durci – Partie 3 : résistance à la compression des éprouvettes, (NF EN 12390-3), France, 2019.

Google Scholar

[41] AFNOR, Essais pour béton durci – Partie 6: Détermination de la résistance en traction par fendage d'éprouvettes, (NF EN 12390-6), France, 2012.

Google Scholar

[42] AFNOR, Essais pour béton durci - Partie 5: résistance à la flexion sur éprouvettes, (NF EN 12390-5), France, 2019.

Google Scholar

[43] AFNOR, Essai pour béton durci - Partie 13 : détermination du module sécant d'élasticité en compression, (NF EN 12390-13), France, 2021.

Google Scholar

[44] AFNOR, Béton - Essai pour béton durci - Essai de porosité et de masse volumique, (NF P18-459), France, 2022.

Google Scholar

[45] AFNOR, Produits et systèmes pour la protection et la réparation des structures en béton - Méthodes d'essai - Détermination de l'absorption capillaire, (NF EN 13057), France, 2002.

Google Scholar

[46] P.K. Mehta and P.J.M. Monteiro, Concrete: Microstructure, Properties, and Materials, 3rd Edition, p.659, McGraw-Hill, New York, 2006.

Google Scholar