[1]
S. Salehi, M. Arashpour, J. Kodikara, and R. Guppy, Sustainable pavement construction: A systematic literature review of environmental and economic analysis of recycled materials, Journal of Cleaner Production. 313 (2021) 127936. https://doi.org/10.1016/j.jclepro. 2021.127936
DOI: 10.1016/j.jclepro.2021.127936
Google Scholar
[2]
R. Ben Othman, S. El Euch Khay, A. Loulizi, and J. Neji, Laboratory evaluation of an ecological pavement construction material: sand concrete reinforced with polypropylene fibres, European Journal of Environmental and Civil Engineering. 23(3) (2019) 287-299
DOI: 10.1080/19648189.2016.1277372
Google Scholar
[3]
A. Wafa, S.E. Khay, M.Karim, and J.Neji, Experimental Study of the Mechanical Behaviour of Brick Waste Concrete and Analytical Prediction of its Elastic Modulus as a Three-Phase Composite Material, International Journal of Engineering Research in Africa. 57 (2021) 125 - 138.
DOI: 10.4028/www.scientific.net/jera.57.125
Google Scholar
[4]
T. Wissem and L. Amara, Selection of a Pavement Structure from Technically Established Alternatives Based on Construction Cost, Energy Consumption, and Carbon Footprint, International Journal of Engineering Research in Africa. 62 (2022) 85 - 106
DOI: 10.4028/p-xx05a5
Google Scholar
[5]
M. Mohanty, S.S. Mohapatra, and S. D. Ph. Nayak, Efficacy of C & D waste in base / subbase layers of pavement - current trends and future prospectives: A systematic review, Construction and Building Materials, 340 (2022) 127726
DOI: 10.1016/j.conbuildmat.2022.127726
Google Scholar
[6]
B.A. Williams, J.R. Willis, J. Shacat, Asphalt pavement industry survey on recycled materials and warm-mix asphalt usage: 2021, 12th ed. National Asphalt Pavement Association; Greenbelt, MD, USA: (2022). IS 138.
DOI: 10.31274/etd-180810-854
Google Scholar
[7]
European Asphalt Pavement Association (EAPA). The Circular Economy of Asphalt. Technical Review (2021) 10 pages.
Google Scholar
[8]
D. Vandewalle, V. Antunes, J. Neves, and A.C. Freire, Assessment of Eco-Friendly Pavement Construction and Maintenance Using Multi-Recycled RAP Mixtures, Recycling. 5(17) (2020)
DOI: 10.3390/recycling5030017
Google Scholar
[9]
L. Yao, Z. Leng, J. Lan, R. Chen, and J. Jiang, Environmental and economic assessment of collective recycling waste plastic and reclaimed asphalt pavement into pavement construction: a case study in Hong Kong, Journal of Cleaner Production. 336 (2022) 130405
DOI: 10.1016/j.jclepro.2022.130405
Google Scholar
[10]
R. Cao, Z. Leng, and S.C. Hsu, Comparative eco-efficiency analysis on asphalt pavement rehabilitation alternatives: hot in-place recycling and milling-and-filling, Journal of Cleaner Production. 210 (2019) 1385–1395
DOI: 10.1016/j.jclepro.2018.11.122
Google Scholar
[11]
Y. Ma, P. Polaczyk, W. Hu, M., Zhang, and B. Huang, Quantifying the effective mobilized RAP content during hot in-place recycling techniques, Journal Of Cleaner Production. 314 (2021) 27953
DOI: 10.1016/j.jclepro.2021.127953
Google Scholar
[12]
B.Ilhem, T. K.Tesnim, N.Mondher, and N.Jamel, Experimental and Numerical Studies of Viscoelastic Behavior of Bituminous Mixture with a High Rate of Reclaimed Asphalt Pavement, Dune Sand and Lime. International Journal of Engineering Research in Africa. 64 (2023)17–34.
DOI: 10.4028/p-684y63
Google Scholar
[13]
F. Xiao, S. Yao, J. Wang, X. Li, and S.N. Amirkhanian, A Literature Review on Cold Recycling Technology of Asphalt Pavement, Construction and Building Materials. 180 (2018) 579-604
DOI: 10.1016/j.conbuildmat.2018.06.006
Google Scholar
[14]
S. Singh, G.D. Ransinchung, and P. Kumar, Feasibility study of RAP aggregates in cement concrete pavements, Road Materials and Pavement Design. 20 (2019) 151-170
DOI: 10.1080/14680629.2017.1380071
Google Scholar
[15]
G. Masi, A. Michelacci, S. Manzi, and M.C. Bignozzi, Assessment of Reclaimed Asphalt Pavement (Rap) as Recycled Aggregate for Concrete, Construction and Building Materials. 341 (2022) 127745
DOI: 10.1016/j.conbuildmat.2022.127745
Google Scholar
[16]
C. Pandiya and A.K. Saxena, Effect of Reclaimed Asphalt Pavement Aggregate on Hardened Properties of Concrete, International Journal for Research in Applied Science & Engineering Technology. 9(6) (2021) 1168-1172
DOI: 10.22214/ijraset.2021.38776
Google Scholar
[17]
R. Vasudeva, and D.M. Akbar, Influence of Reclaimed Asphalt Pavement Aggregates on Strength and Durability Properties of Concrete Mixes in Rigid Pavements, The Journal of Engineering Research. 20(1) (2023) 1-11
DOI: 10.53540/tjer.vol20iss1pp1-11
Google Scholar
[18]
T.R. Marjono, The Review on the Roller Compacted Concrete Performance: The Effect of Compaction Number on the Compressive Strength, Civil Engineering and Architecture. 11(5) (2023) 2392 - 2404
DOI: 10.13189/cea.2023.110511
Google Scholar
[19]
R. Dadi, K.S. Shashi, and M. Abdul Akbar, Evaluation of roller compacted concrete for its application as high traffic resisting pavements with fatigue analysis, Construction and Building Materials. 401 (2023) 132977
DOI: 10.1016/j.conbuildmat.2023.132977
Google Scholar
[20]
B.A.V. Ram Kumar, and G. Rama Prashat, Performance evaluation of sustainable materials in roller compacted concrete pavements: a state of art review, Journal of Building Pathology and Rehabilitation. 7 (2022) 1-15
DOI: 10.1007/s41024-022-00212-y
Google Scholar
[21]
C. Chhorn, S.J. Hong, and S.W. Lee, A study on performance of roller-compacted concrete for pavement, Construction and Building Materials. 153 (2017) 535–543
DOI: 10.1016/j.conbuildmat.2017.07.135
Google Scholar
[22]
A. Modarres, and Z. Hosseini, Mechanical properties of roller compacted concrete containing rice husk ash with original and recycled asphalt pavement material, Materials & Design. 64 (2014) 227–236
DOI: 10.1016/j.matdes.2014.07.072
Google Scholar
[23]
C. Settari, F. Debieb, E. H. Kadri, and O. Boukendakdji, Assessing the effects of recycled asphalt pavement materials on the performance of roller compacted concrete, Construction and Building Materials. 101(1) (2015) 617–621
DOI: 10.1016/j.conbuildmat.2015.10.039
Google Scholar
[24]
M. Fakhri, and A. Amoo Soltani, The effect of reclaimed asphalt pavement and crumb rubber on mechanical properties of roller compacted concrete pavement, Construction and Building Materials. 137 (2017) 470–484
DOI: 10.1016/j.conbuildmat.2017.01.136
Google Scholar
[25]
S. Debbarma, S. Singh, and R.N.G.D. Ransinchung, Laboratory investigation on the fresh, mechanical, and durability properties of roller compacted concrete pavement containing reclaimed asphalt pavement aggregates, Transportation Research Record. 2673(10) (2019) 652-662
DOI: 10.1177/0361198119849585
Google Scholar
[26]
I. Boussetta, S. El Euch Khay, and J. Neji, Experimental testing and modelling of roller compacted concrete incorporating RAP waste as aggregates, European Journal of Environmental and Civil Engineering. 25(4) (2018) 1–15
DOI: 10.1080/19648189.2018.1482792
Google Scholar
[27]
H. Divandary and Y. Bashkoul, Evaluate the use of Recycled Asphalt Pavement (RAP) in the Construction of Roller Compacted Concret Pavement (RCC), Civil Engineering Journal. 4(5) (2018) 1157-1164
DOI: 10.28991/cej-0309164
Google Scholar
[28]
M. Alireza, M. Abolfazl, and M. Dareyni, Durability and mechanical properties of roller compacted concrete containing coarse reclaimed asphalt pavement, The baltic journal of road and bridge engineering. 16(3) (2021) 82-110
DOI: 10.7250/bjrbe.2021-16.533
Google Scholar
[29]
B. Ram Kumar and G. Ramakrishna, Sustainable Use of Red Mud and Reclaimed Asphalt Pavement Wastes in Roller Compacted Concrete, International Journal of Pavement Research and Technology. 17 (2024) 291-305
DOI: 10.1007/s42947-022-00236-0
Google Scholar
[30]
P. Sharma, S.K. Sharma, D. Rambabu, and B.S. Reddy, A detailed laboratory investigation on evolving the mix design of roller compacted concrete containing RAP aggregates and SCMs, Innovative Infrastructure Solutions. 8(284)(2023)
DOI: 10.1007/s41062-023-01248-w
Google Scholar
[31]
AFNOR, Ciment - Partie 1 : composition, spécifications et critères de conformité des ciments courants, (NF EN 197-1), France, 2012.
Google Scholar
[32]
AFNOR, Essais pour déterminer les caractéristiques géométriques des granulats - Partie 1 : détermination de la granularité - Analyse granulométrique par tamisage, (NF EN 933-1), France, 2012.
Google Scholar
[33]
AFNOR, Essais pour déterminer les caractéristiques mécaniques et physiques des granulats - Partie 6 : détermination de la masse volumique et du coefficient d'absorption d'eau, (NF EN 1097-6), France, 2014.
Google Scholar
[34]
LCPC, BétonlabPro2, Une nouvelle approche de la formulation des bétons, Logiciel de formulation, 2000.
Google Scholar
[35]
F. de Larrard, Concrete mixture proportioning – A scientific approach, In S. Mindess & A. Bentur, (Eds.), Modern concrete technology (vol. 9, p.414), London: E & FN Spon, 1999.
Google Scholar
[36]
P. Shafigh, M.M. Hashemi, B.H. Nam, and S.B. Koting, Optimum moisture content in roller-compacted concrete pavement, International Journal of Pavement Engineering. 21 (2020) 1769 - 1779
DOI: 10.1080/10298436.2019.1567919
Google Scholar
[37]
AFNOR, Sols: reconnaissance et essais – Determination des references de compactage d'un materiau – Essai Proctor normal - Essai Proctor modifie, (NF P94-093) France, 2014.
Google Scholar
[38]
AFNOR, Essais pour beton frais – Partie 2: Essai d'affaissement, (NF EN 12350-2), France, 2019.
Google Scholar
[39]
AFNOR, Chaussées en béton de ciment - Exécution et contrôle, (NF P98-170), France, 2018.
Google Scholar
[40]
AFNOR, Essais pour béton durci – Partie 3 : résistance à la compression des éprouvettes, (NF EN 12390-3), France, 2019.
Google Scholar
[41]
AFNOR, Essais pour béton durci – Partie 6: Détermination de la résistance en traction par fendage d'éprouvettes, (NF EN 12390-6), France, 2012.
Google Scholar
[42]
AFNOR, Essais pour béton durci - Partie 5: résistance à la flexion sur éprouvettes, (NF EN 12390-5), France, 2019.
Google Scholar
[43]
AFNOR, Essai pour béton durci - Partie 13 : détermination du module sécant d'élasticité en compression, (NF EN 12390-13), France, 2021.
Google Scholar
[44]
AFNOR, Béton - Essai pour béton durci - Essai de porosité et de masse volumique, (NF P18-459), France, 2022.
Google Scholar
[45]
AFNOR, Produits et systèmes pour la protection et la réparation des structures en béton - Méthodes d'essai - Détermination de l'absorption capillaire, (NF EN 13057), France, 2002.
Google Scholar
[46]
P.K. Mehta and P.J.M. Monteiro, Concrete: Microstructure, Properties, and Materials, 3rd Edition, p.659, McGraw-Hill, New York, 2006.
Google Scholar