[1]
Siham, K., Fabrice, B., Edine, A. N., & Patrick, D, Marine dredged sediments as new materials resource for road construction, Waste Management, 28(5), p.919–928. (2008). DOI: 919e928
DOI: 10.1016/j.wasman.2007.03.027
Google Scholar
[2]
Cappuyns, V., Deweirt, V., & Rousseau, S, Dredged sediments as a resource for brick production: Possibilities and barriers from a consumers' perspective, Waste Management, 38, 372e380, (2015)
DOI: 10.1016/j.wasman.2014.12.025
Google Scholar
[3]
Belas, N., Aggoun, S., Benaissa, A., &Kheirbek, A, Recovery of natural waste in the development of new concrete and construction materials, Retrieved from, In 20eme congress français de Mecanique (pp. 1e6). Besançon, August 29 -September 2, (2011). http://hdl.handle.net/2042/46183. (In French)
Google Scholar
[4]
Oh, H., Lee, J., Banthia, N., &Talukdar, S, An experimental study of the physicochemical properties of a cement matrix containing dredged materials. Materials Sciences and Applications, 2(7), 847e857, (2011). https://doi.org/10.4236/ msa.2011.27115
DOI: 10.4236/msa.2011.27115
Google Scholar
[5]
Limeira, J., Agullo, L., &Etxeberria, M, Fine dredged marine sand on mortars, In 2nd international RILEM Conference on Progress of Recyclingin the built environment, 2e4 December 2009, Sao Paulo, Brazil. Retrieved from http://demo. webdefy.com/rilem-new/wp- content/uploads/2016/10/df0276b3264b698a1cb1852a5eb4e0f0.pdf
Google Scholar
[6]
Limeira, J., Etxeberria, M., Agullo, L., & Molina, D, Mechanical and durability properties of concrete made with dredged marine sand, Construction and Building Materials, 25(11), 4165e4174, (2011). https://doi.org/10.1016/ j.conbuildmat.2011.04.053
DOI: 10.1016/j.conbuildmat.2011.04.053
Google Scholar
[7]
Gartner, E., &Hirao, H, A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete, Cement and Concrete Research, 78, 126e142, (2015). https://doi.org/10.1016/ J.CEMCONRES.2015.04.012
DOI: 10.1016/j.cemconres.2015.04.012
Google Scholar
[8]
Scrivener, K. L., John, V. M., & Gartner, E. M, Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry, Cement and Concrete Research, 114, 2e26, (2018). https://doi.org/10.1016/ j.cemconres.2018.03.015
DOI: 10.1016/j.cemconres.2018.03.015
Google Scholar
[9]
Zea-Garcia, J. D., Santacruz, I., Aranda, M. A. G., & De la Torre, A. G, Alite belite-ye'elimite cements: Effect of dopants on the clinker phase composition and properties, Cement and Concrete Research, 115, 192e202, (2019). https://doi.org/10.1016/J.CEMCONRES. 2018.10.019
DOI: 10.1016/j.cemconres.2018.10.019
Google Scholar
[10]
Scrivener, K., Snellings, R., Lothenbach, B., & Group, F, A practical guide to microstructural analysis of cementitious materials, Boca Raton: CRC Press, (2017). https:// doi.org/.
DOI: 10.1201/b19074
Google Scholar
[11]
Scrivener, K., Martirena, F., Bishnoi, S., &Maity, S, Calcined clay limestone cements (LC3), Cement and concrete research, 114, 49-56 (2018). https://doi.org/10.1016/j.cemconres. 2017.08.017
DOI: 10.1016/j.cemconres.2017.08.017
Google Scholar
[12]
Casanova, P, Concrete reinforced with metallic fibers of the material has the structure Experimental study and analysis of the behavior of beams subjected to bending and shear force, Doctoral thesis, National School of Bridges and Roads, 225 pages, France (1995).
Google Scholar
[13]
Garcés, P., Carrión, M. P., García-Alcocel, E., Payá, J., Monzó, J., &Borrachero, M. V, Mechanical and physical properties of cement blended with sewage sludge ash, Waste management, 28(12), 2495-2502 (2008).
DOI: 10.1016/j.wasman.2008.02.019
Google Scholar
[14]
LI, Jiang-Shan, CHEN, Xin, LANG, Lei, et al., Evaluation of natural and artificial fiber reinforcements on the mechanical properties of cement-stabilized dredged sediment, Soils and Foundations, vol. 63, no 3, p.101319. (2023).
DOI: 10.1016/j.sandf.2023.101319
Google Scholar
[15]
Uysal, M., Kuranlı, Ö. F., Aygörmez, Y., Canpolat, O., & Çoşgun, T, The effect of various fibers on the red mud additive sustainable geopolymer composites. Construction and Building Materials, 363 (2023): 129864.
DOI: 10.1016/j.conbuildmat.2022.129864
Google Scholar
[16]
Ferreiro S., Herfort D., Damtoft J.S. Effect of raw clay type, fineness, water-to-cement ratio and fly ash addition on workability and strength performance of calcined clay–limestone Portland cements. Cem. Concr. Res. 2017; 101:1–12.
DOI: 10.1016/j.cemconres.2017.08.003
Google Scholar
[17]
Lencis, U., Udris, A., Kara De Maeijer, P., & Korjakins, A, Methodology for Determining the Correct Ultrasonic Pulse Velocity in Concrete. Buildings, 14.3 (2024): 720.
DOI: 10.3390/buildings14030720
Google Scholar
[18]
Naamane, S., Rais, Z., &Chaouch, M, Incorporation of wastewater sludge treated by water washout in cement, J. Mater. Environ. Sci, 5, 2515-2521(2014).
Google Scholar
[19]
Benasla M., Benamara L., Hadjel M, Characterization of the dredged mud from the Oued Fodda dam and valorization as a construction material, J. Mater. Environ. SCI., 6, 546–558(2015).
Google Scholar
[20]
Johnston, C.D, Proportioning, mixing and placement of fibre-reinforced cements and concretes, Production Methods and Workability of Concrete, Proceedings of the international Rilem conference, London, pp.155-179 (1996).
DOI: 10.1201/9781482271782-24
Google Scholar
[21]
ASTM-C305-06, Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency, ASTM International, West Conshohocken, PA, (2006)
DOI: 10.1520/c0305-13
Google Scholar
[22]
Qasrawi, H. Y, Concrete strength by combined nondestructive methods simply and reliably predicted, Cement and concrete research, 30(5), 739-746 (2000).
DOI: 10.1016/s0008-8846(00)00226-x
Google Scholar
[23]
NF-EN-196-1, Methods of testing cement–part 1: determination of mechanical strength, 2006.
Google Scholar
[24]
Grunewald, S., Walraven, J.C, Parameter-study on the influence of steel fibers and coarse aggregate content on the fresh properties of self-compacting concrete, Cement Concr. Res., Vol.31, 2001, pp.1793-1798 (2001).
DOI: 10.1016/s0008-8846(01)00555-5
Google Scholar
[25]
Ng, Yee Leng, et al. "Influence of alum sludge ash and ground granulated blast furnace slag on properties of cement mortar." Cleaner Engineering and Technology 6 (2022): 100376.
DOI: 10.1016/j.clet.2021.100376
Google Scholar
[26]
Yan, P., Chen, B., Haque, M. A., & Liu, T, Influence of red mud on the engineering and microstructural properties of sustainable ultra-high-performance concrete. Construction and Building Materials, 396, 132404 (2023).
DOI: 10.1016/j.conbuildmat.2023.132404
Google Scholar
[27]
Muhiddin, A. B., Tjaronge, M. W., Caronge, M. A., & Khalid, N. H. A, Reliability assessment of carbon fiber mortar: Combined pulse velocity, point load, and compressive strength tests. Results in Engineering, 21, 101735(2024).
DOI: 10.1016/j.rineng.2023.101735
Google Scholar
[28]
M. Apostolopoulou, A. Bakolas, and M. Kotsainas, "Mechanical and physical performance of natural hydraulic lime mortars", Constr. Build. Mater., vol. 290, p.123272, (2021).
DOI: 10.1016/j.conbuildmat.2021.123272
Google Scholar
[29]
Benyahia, A., Salhi, M., & Boubekeur, T, Effects of waste glass powder on properties of self-compacting repair mortars, International Journal of Engineering Research in Africa, 62, 43-56 (2022).
DOI: 10.4028/p-1eiar8
Google Scholar
[30]
ZHOU, Xianliang, ZHOU, Xiaojun, HE, Ling, et al. Effect of sewage sludge ash on mechanical properties, drying shrinkage and high-temperature resistance of cement mortar. Case Studies in Construction Materials, (2024), p. e03101.
DOI: 10.1016/j.cscm.2024.e03101
Google Scholar
[31]
Motisariya, Kevalya, et al. "Experimental analysis of strength and durability properties of cement binders and mortars with addition of microfine sewage sludge ash (SSA) particles." Materials Today: Proceedings 85 (2023): 24-28.
DOI: 10.1016/j.matpr.2023.05.248
Google Scholar
[32]
Mebrouki, A, Valorization of local materials: study of the mechanical behavior of mortars incorporating a natural Algerian pozzolan, In Annales du bâtiment et des travaux publics, No. 3, pp.29-36 (2006).
Google Scholar
[33]
Benkaddour, M., Aoual, F. K., &Semcha A, Durabilité des mortiers à base de pouzzolane naturelle et de pouzzolane artificielle, Nature & Technology, (1), 63. (2009).
Google Scholar
[34]
Boubekeur T, Salhi M, Ezziane K & Kadri, E H, Effect of elevated temperature on the hydration heat and mechanical properties of blended cements mortars, Journal of Materials and Engineering Structures «JMES», 8(3) 341-356(2021).
Google Scholar
[35]
Boubekeur, T., Ezziane, K., & Kadri, E. H, Quantification and analysis of heat hydration of blended cement at different temperature. Journal of adhesion science and Technology, 31(24), 2741-2756 (2017).
DOI: 10.1080/01694243.2017.1325557
Google Scholar
[36]
Salhi, M., Ghrici, M., Li, A., & Bilir, T, Effect of curing treatments on the material properties of hardened self-compacting concrete, Advances in concrete construction, 5(4), 359 (2017).
Google Scholar
[37]
Duan, D., Liao, H., Wang, J., & Cheng, F, Hydration characteristics of tailing mud–42.5 OPC composite cementitious system and its application to dry-mixed mortar, Journal of Building Engineering, 70, 106294 (2023).
DOI: 10.1016/j.jobe.2023.106294
Google Scholar